[PDF]    http://dx.doi.org/10.3952/physics.v54i4.3014

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 256–265 (2014)

Agnė Kalnaitytėa, Saulius Bagdonasa, and Ričardas Rotomskisa,b
aDepartment of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
bLaboratory of Biomedical Physics, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
E-mail: agne.kalnaityte@gmail.com

Received 14 May 2014; revised 17 July 2014; accepted 10 December 2014

The effect of exposure to the green laser light on the photoluminescence (PL) stability of CdSe/ZnS quantum dots (QDs) capped with either mercaptopropionic (MPA) or thioglycolic (TGA) acid was studied in aqueous suspensions and in the presence of bovine serum albumin (BSA). The results of absorbance and luminescence measurements suggest that the capacity of protein to change the coating structure of thiol-capped QDs and the stability of photoluminescence depends on the nature of stabilizing surface ligands. The interaction of BSA molecules with TGA-capped quantum dots increases their PL quantum yield (QY) and makes PL more stable, however, the effect is opposite for MPA-capped QDs. The light exposure instantly increases the PL intensity and the quantum yield of TGA-capped QDs but does not change those of MPA-capped QDs. In the medium with BSA, however, the occurrence of light-induced PL enhancement does not depend on stabilizing thiol ligands of QDs and it lasts for a relatively long period of time.
Keywords: quantum dots, photostability, protein, photoluminescence
PACS: 81.07.Ta, 78.67.Hc

Agnė Kalnaitytėa, Saulius Bagdonasa, Ričardas Rotomskisa,b
aVilniaus universiteto Fizikos fakulteto Kvantinės elektronikos katedra, Vilnius, Lietuva
bLaboratory of Biomedical physics, National cancer institute Vilnius, Lietuva

Veikiant CdSe/ZnS kvantinius taškus, dengtus merkaptopropionine (MPR) ar tioglikoline (TGR) rūgštimis, žalia lazerio spinduliuote, ištirtas jų stabilumas vandeninėje terpėje ir terpėje su jaučio serumo albuminu (JSA). Iš sugerties bei liuminescencijos matavimų rezultatus nustatyta, jog baltymo gebėjimas pakeisti tioliais dengtų kvantinių taškų dangalo struktūrą ir fotoliuminescencijos (FL) intensyvumą priklauso nuo stabilizuojančių paviršiaus ligandų prigimties. Kvantiniams taškams, dengtiems TGR, sąveikaujant su JSA molekulėmis padidėdavo jų FL kvantinis našumas, o fotoliuminescencija tapdavo stabilesnė, priešingas efektas gautas su MPR dengtais kvantiniais taškais. Šviesa iš karto po švitinimo padidindavo TGR dengtų kvantinių taškų fotoliuminescencijos intensyvumą ir kvantinį našumą, bet kvantinių taškų, dengtų MPR, spektroskopinių savybių nepakeisdavo. Terpėje su JSA fotoliuminescencijos padidėjimas stebimas nepriklausomai nuo kvantinių taškų dengiamojo sluoksnio prigimties bei stabilumo, o fotoliuminescencija išlieka santykinai stabilesnė.

References / Nuorodos

[1] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imanib, and A.M. Seifalian, Biological applications of quantum dots, Biomaterials 28, 4717–4732 (2007),
[2] J.A. Kloefper, S.E. Bradforth, and J.L. Nadeau, Photophysical properties of biologically compatible CdSe quantum dot structures, J. Phys. Chem. B 109, 9996–10003 (2005),
[3] A.M. Derfus, W.C.W. Chan, and S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots, Nano Lett. 4(1), 11–18 (2004),
[4] J. Ma, J.Y. Chen, J. Guo, C. Wang, W. Yang, L. Xu, and P. Wang, Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photooxidation, Nanotechnology 17, 2083 (2006),
[5] Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y.-f. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett. 11, 3174–83 (2011),
[6] K. Susumu, H. Tetsuo Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, and H. Mattoussi, Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands, J. Am. Chem. Soc. 129, 13987–13996 (2007),
[7] W.W. Yu, E. Chang, R. Drezek, and V.L. Colvin, Water-soluble quantum dots for biomedical applications, Biochem. Biophys. Res. Commun. 348, 781–786 (2006),
[8] J. Aldana, Y.A. Wang, and X.G. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001),
[9] F. Koberling, A. Mews, and T. Basché, Oxygen-induced blinking of single CdSe nanocrystals, Adv. Mater. 13(9), 672–676 (2001),
[10] V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, and M. Ishikawa, Photoinduced photoluminescence variations of CdSe quantum dots in polymer solutions, J. Phys. Chem. C 111, 7924–7932 (2007),
[11] S.R. Cordero, P.J. Carson, R.A. Estabrook, G.F. Strouse, and S.K. Buratto, Photo-activated luminescence of CdSe quantum dot monolayers, J. Phys. Chem. B 104, 12137–12142 (2000),
[12] D.F. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem. 60(7), 1107–1114 (1988),
[13] F. López Arbeloa, P. Ruiz Ojeda, and I. López Arbeloa, Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions, J. Lumin. 44(1–2), 105–112 (1989),
[14] D. Magde, G.E. Rojas, and P.G. Seybold, Solvent dependence of the fluorescence lifetimes of xanthene dyes, Photochem. Photobiol. 70(5), 737–744 (1999),
[15] T. Karstens and K. Kobs, Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements, J. Phys. Chem. 84(14), 1871–1872 (1980),
[16] M. Daimon and A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region, Appl. Opt. 46(18), 3811–3820 (2007),
[17] J. Nowakowska, The Refractive Indices of Ethyl Alcohol and Water Mixtures, Master’s Theses, Paper 668 (Loyola University, Chicago, 1939),
[18] J. Aldana, N. Lavelle, Y.J. Wang, and X.G. Peng, Size dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals, J. Am. Chem. Soc. 127, 2496–2504 (2005),
[19] Q. Wang, Y. Kuo, Y. Wang, G. Shin, Ch. Ruengruglikit, and Q. Huang, Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots, J. Phys. Chem. B 110, 16860–16866 (2006),
[20] V. Poderys, M. Matulionyte, A. Selskis, and R. Rotomskis, Interaction of water-soluble CdTe quantum dots with bovine serum albumin, Nanoscale Res. Lett. 6, 9 (2011),
[21] B. Sahoo, M. Goswami, S. Nag, and S. Maiti, Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers, Chem. Phys. Lett. 445, 217–220 (2007),
[22] J. Lovr, S. Ju Cho, F.M. Winnik, and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol. 12, 1227–1234 (2005),
[23] M. Matulionyte, V. Poderys, and R. Rotomskis, Influence of surface coating on CdTe quantum dots stability and interaction with bovine serum albumin, in: Proceedings of 8th International Conference on Medical Physics in the Baltic States (Kaunas, Lithuania, 2010),
[24] M. Oda, A. Hasegawab, N. Iwamib, K. Nishiurab, N. Andob, A. Nishiyamab, H. Horiuchib, and T. Tania, Reversible photobluing of CdSe/ZnS/TOPO nanocrystals, Colloids Surf. B 56, 241–245 (2007),
[25] J. Jasieniak and P. Mulvaney, From Cd-rich to Se-rich – the manipulation of CdSe nanocrystal surface stoichiometry, J. Am. Chem. Soc. 129, 2841–2848 (2007),
[26] Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, and L.M. Liz-Marzan, Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores, J. Phys. Chem. B 108, 15461–15469 (2004),
[27] Y. Wang, Z. Tang, M.A. Correa-Duarte, L.M. Liz-Marzán, and N.A. Kotov, Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films, J. Am. Chem. Soc. 125, 2830–2831 (2003),
[28] K. Pechstedt, T. Whittle, J. Baumberg, and T. Melvin, Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water, J. Phys. Chem. C 114, 12069–12077 (2010),
[29] J. Silver and W. Ou, Photoactivation of quantum dot fluorescence following endocytosis, Nano Lett. 5(7), 1445–1449 (2005),
[30] S. Patra and A. Samanta, A fluorescence correlation spectroscopy, steady-state, and time-resolved fluorescence study of the modulation of photophysical properties of mercaptopropionic acid capped CdTe quantum dots upon exposure to light, J. Phys. Chem. C 117, 23313–23321 (2013),
[31] H. Bao, Y. Gong, Z. Li, and M. Gao, Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure, Chem. Mater. 16, 3853–3869 (2004),
[32] M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, and G. Rumbles, Photoenhancement of luminescence in colloidal CdSe quantum dot solutions, J. Phys. Chem. B 107, 11346–11352 (2003),
[33] K. Sato, S. Kojima, S. Hattori, T. Chiba, K. Ueda-Sarson, T. Torimoto, Y. Tachibana, and S. Kuwabata, Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation, Nanotechnology 18, 465702 (2007),