[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3056

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 3543 (2015)

Tomas Grigaitisa, Arnas Naujokaitisa, Saulius Tumėnasb, Giedrius Juškaa, and Kęstutis Arlauskasa
aDepartment of Solid State Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: tomasgrigaitis@gmail.com
bDepartment of Optoelectronics, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania

Received 16 December 2014; revised 1 February 2015; accepted 20 March 2015

Two series of amorphous silicon nitride films were deposited using a chemical vapour deposition (CVD) reactor with two and three electrodes. Nitrogen gas and silane diluted with argon mixture (5% SiH4 + 95% Ar) were used as the working gas. The silicon nitride films were deposited at the same time on CaF2 and aluminium-coated glass substrates at 300 °C. Changing of the injected gas ratios allowed us to shift the band gap of the films in the 1.85–5.15 eV range. From AFM analysis it was found that the samples deposited in a three-electrode chamber demonstrated lower surface roughness. The electrical measurements revealed that the samples deposited in the three-electrode CVD reactor demonstrated lower leakage current and higher breakdown voltage. The composition of layers was investigated using energy-dispersive X-ray (EDS) and Fourier transform infrared (FTIR) spectroscopies. Additionally, the composition of the deposited films was evaluated from the refractive indexes, which have been estimated by fitting the spectroscopic ellipsometry data using the Tauc–Lorenz model.
Keywords: silicon nitride, plasma deposition, CVD, EDS, FTIR
PACS: 61.43.Er, 81.15.Gh, 85.40.Sz


Tomas Grigaitisa, Arnas Naujokaitisa, Saulius Tumėnasb, Giedrius Juškaa, Kęstutis Arlauskasa
aVilniaus universiteto Kietojo kūno elektronikos katedra, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Optoelektronikos skyrius, Vilnius, Lietuva

Silano ir argono (5 % SiH4, 95 % Ar) dujų mišiniai bei azoto dujos buvo naudojami silicio nitrido sluoksnių gamybai dviejų ir trijų elektrodų cheminio garų nusodinimo (CVD) kamerose. Sluoksniai buvo formuojami tuo pačiu metu ant CaF2 kristalo ir aliuminiu padengto stiklinio padėklo, įkaitintų iki 300 °C. Keičiant injektuojamų dujų santykį silicio nitrido draustinės juostos tarpas kito nuo 1,85 eV iki 5,15 eV. Atominės jėgos mikroskopu nustatyta, kad trijų elektrodų kameroje užaugintų bandinių paviršiaus nelygumas mažesnis. Elektriniai matavimai atskleidė, kad trijų elektrodų kameroje užauginti sluoksniai pasižymi mažesne nuotėkio srove ir aukštesne pramušimo įtampa. Silicio nitrido sudėtis buvo tiriama Rentgeno spindulių dispersijos (EDS) ir Furje spektrometrijos (FTIR) metodais. Naudojant elipsometrinę spektroskopinę analizę ir taikant Tauco–Lorenzo modelį įvertinti sluoksnių lūžio rodikliai, kurie leido nustatyti silicio nitrido sluoksnio sudėtį.

References / Nuorodos

[1] V. Verlaan, C.H.M. van der Werf, Z.S. Houweling, I.G. Romijn, A.W. Weeber, H.F.W. Dekkers, H.D. Goldbach, and R.E.I. Schropp, Multi-crystalline Si solar cells with very fast deposited (180 nm/min) passivating hot-wire CVD silicon nitride as antireflection coating, Prog. Photovolt. Res. Appl. 15(7), 563–573 (2007),
[2] A.K. Sinha, H.J. Levinstein, T.E. Smith, G. Quintana, and S.E. Haszko, Reactive plasma deposited Si‐N films for MOS‐LSI passivation, J. Electrochem. Soc. 125(4), 601–608 (1978),
[3] L. Pavesi, Will silicon be the photonic material of the third millenium? J. Phys. Condens. Matter. 15, R1169–R1196 (2003),
[4] C.J. Oliphant, C.J. Arendse, T.F.G. Muller, and D. Knoesen, Characterization of silicon nitride thin films deposited by hot-wire CVD at low gas flow rates, Appl. Surf. Sci. 285, 440–449 (2013),
[5] M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, and K. Chen, Observation of the size-dependent blue-shifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices, Appl. Phys. Lett. 72, 722–724 (1998),
[6] R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices, Appl. Phys. Lett. 92, 181106 (2008),
[7] S. Okada and H. Matsumara, Improved properties of silicon nitride films prepared by the catalytic chemical vapour deposition method, Jpn. J. Appl. Phys. 36, 7035–7040 (1997),
[8] Q. Cheng, S. Xu, and K.K. Ostrikov, Controlled-bandgap silicon nitride nanomaterials: deterministic nitrogenation in high-density plasmas, J. Mater. Chem. 20, 5853–5859 (2010),
[9] D. Drouin, A. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning 29, 92–101 (2007),
[10] J.C. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1972),
[11] Q. Xu, Y. Ra, M. Bachman, and G.P. Li, Characterization of low-temperature silicon nitride films produced by inductively coupled plasma chemical vapour deposition, J. Vac. Sci. Technol. A 145, 145–156 (2009),
[12] S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons Inc., New York, 1969),
[13] C. Kittel, Introduction to Solid State Physics, 8th ed., Ch. 7 (John Wiley & Sons Inc., New York, 2005),
[14] E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 2002),
[15] A. Piccirillo and A.L. Gobbi, Physical‐electrical properties of silicon nitride deposited by PECVD on III–V semiconductors, J. Electrochem. Soc. 137, 3910–3917 (1990),
[16] P.R. Griffiths and J.A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (John Wiley & Sons Inc., New Jersey, 2007),
[17] M.H. Brodsky, M. Cardona, and J.J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Phys. Rev. B 16, 3556–3571 (1977),
[18] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, and W. Czubatyj, Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films, Phys. Rev. B 28, 3234–3240 (1983),
[19] D.V. Tsu, G. Lucovsky, and M.J. Mantini, Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition, Phys. Rev. B 33, 7069–7076 (1986),
[20] W.A. Lanford and M.J. Rand, The hydrogen content of plasma‐deposited silicon nitride, J. Appl. Phys. 49(4), 2473–2477 (1978),
[21] W.A.P. Claassen, W.G.J.N. Valkenburg, F.H.P.M. Habraken, and Y. Tamminga, Characterization of plasma silicon nitride layers, J. Electrochem. Soc. 130, 2419–2423 (1983),
[22] G.E. Jellison Jr., V.I. Merkulov, A.A. Puretzky, D.B. Geohegan, G. Eres, D.H. Lowndes, and J.B. Caughman, Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry, Thin Solid Films 377–378, 68–73 (2000),
[23] E. Bustarret, M. Bensouda, M. Habrard, J. Bruyère, S. Poulin, and S. Gujrathi, Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis, Phys. Rev. B 38(12), 8171–8184 (1988),
[24] J.J. Mei, H. Chen, and W.Z. Shen, Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films, J. Appl. Phys. 100(7), 073516 (2006),
[25] M. Wang, J. Huang, Z. Yuan, and A. Anopchenko, Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. II. Defect states electroluminescence, Appl. Phys. 104, 083505 (2008),
[26] B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti, and G. Bremond, Effect of total pressure on the formation and size evolution of silicon quantum dots in silicon nitride films, Appl. Phys. Lett. 96, 183105 (2010),
[27] G. Scardera, T. Puzzer, G. Conibeer, and M.A. Green, Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films, J. Appl. Phys. 104, 104310 (2008),
[28] G.M. Samuelson and K.M. Mar, The correlations between physical and electrical properties of PECVD SiN with their composition ratios, J. Electrochem. Soc. 129, 1773–1778 (1982),