[PDF]    http://dx.doi.org/10.3952/physics.v55i1.3058

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 5462 (2015)

Rūta Druteikienė, Justina Šapolaitė, Žilvinas Ežerinskis, Evaldas Naujalis, and Andrius Puzas
Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300 Vilnius, Lithuania
E-mail: ruta@ar.fi.lt

Received 8 October 2014; revised 4 December 2014; accepted 20 March 2015

This work is directed to assess iodine interactions with hardened cement paste (HCP) under highly alkaline conditions (pH > 12) with/without a reductant. For this purpose, a series of Kd (distribution coefficient) experiments using 127I as a tracer were performed. The Kd values of iodine were in the order of 172–1095 mL g–1 in the batch experiment without a reductant, and in the order of 83–92 mL g–1 in the experiment with a reductant. The percentage of iodine leached out from HCP throughout the experiment suggested its very strong binding with cementitious materials. The obtained results allow supposing that chemical speciation of iodine has influence on the interaction of iodine with HCP under highly alkaline conditions.
Keywords: iodine, cement, sorption, desorption, Kd
PACS: 28.41.Kw, 68.43.Mn, 68.43.-h, 82.80.Bg, 07.75.th


Rūta Druteikienė, Justina Šapolaitė, Žilvinas Ežerinskis, Evaldas Naujalis, Andrius Puzas
Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Radioaktyviųjų atliekų saugyklų inžinerinių barjerų funkcija – užtikrinti ilgalaikį ir saugų pavojingų atliekų laikymą užkertant kelią nekontroliuojamam radionuklidų sklidimui į aplinką. Potencialus radionuklidų sklidimas per saugyklų inžinerinius barjerus gali atsirasti dėl oksiduojančio / redukuojančio aplinkos poveikio ir dėl to susidarančių radioaktyviųjų elementų cheminių savybių pokyčių. Radioaktyviųjų elementų sulaikymas kietinančioje matricoje yra svarbi sąlyga, leidžianti užtikrinti efektyvų radioaktyviųjų atliekų saugojimą.
Darbe buvo tiriama jodo (127I) sorbcijos į hidratuotą cementą ir išplovimo iš jo kinetika, proceso priklausomybė nuo elemento cheminės formos stipriai šarminėje (pH > 12) terpėje naudojant / nenaudojant reduktorių Na2S2O4. Nustatytas jodo pasiskirstymo tarp kietos ir skystos fazės koeficientas (Kd). Eksperimentinėje sistemoje be reduktoriaus jodo Kd kito 172–1095 mL g–1 ribose, sistemoje su reduktoriumi jodido (I) Kd siekė 83–92 mL g–1.
Eksperimento rezultatai rodo, kad stipriai šarminėje aplinkoje jodas yra efektyviai fiksuojamas cemento matricoje ir jo sorbcija priklauso nuo jodo oksidacijos laipsnio.

References / Nuorodos

[1] J. Tits, E. Wieland, C.J. Müller, C. Landesman, and M.H. Bradbury, Strontium binding by calcium silicate hydrates, J. Colloid Interface Sci. 300(1), 78–87 (2006),
[2] M. Harfouche, E. Wieland, R. Dähn, T. Fujita, J. Tits, D. Kunz, and M. Tsukamoto, EXAFS study of U(VI) uptake by calcium silicate hydrates, J. Colloid Interface Sci. 303(1), 195–204 (2006),
[3] X. Gaona, R. Dähn, J. Tits, A.C. Scheinost, and E. Wieland, Uptake of Np(IV) by C-S-H phases and cement paste: an EXAFS study, Environ. Sci. Technol. 45(20), 8765–8771 (2011),
[4] F.P. Glasser, J. Marchand, and E. Samson, Durability of concrete-degradation phenomena involving detrimental chemical reactions, Cement Concr. Res. 38(2), 226–246 (2008),
[5] A. Stockdale and N.D. Bryan, The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence, Earth Sci. Rev. 121, 1–17 (2013),
[6] D. Jacques, L. Wang, E. Martens, and D. Mallants, Modelling chemical degradation of concrete during leaching with rain and soil water types, Cement Concr. Res. 40(8), 1306–1313 (2010),
[7] N.D.M. Evans, Binding mechanisms of radionuclides to cement, Cement Concr. Res. 38(4), 543–553 (2008),
[8] G. Klevinskas, A. Juodis, R. Plukienė, A. Plukis, and V. Remeikis, Analysis of iodine release from the defective fuel elements of the RBMK-1500 reactor, Lith. J. Phys. 47(2), 211–219 (2007),
[9] G. Klevinskas, A. Juodis, A. Plukis, R. Plukienė, and V. Remeikis, Determination of I-129 activity in the RBMK-1500 main circulation circuit, Nucl. Eng. Des. 238(7), 1518–1524 (2008),
[10] V. Remeikis, A. Plukis, A. Juodis, A. Gudelis, D. Lukauskas, R. Druteikienė, G. Lujanienė, B. Lukšienė, R. Plukienė, and G. Duškesas, Study of the nuclide inventory of operational radioactive waste for the RBMK-1500 reactor, Nucl. Eng. Des. 239(4), 813–818 (2009),
[11] A. Jermolajev, L. Juodis, R. Druteikienė, and V. Remeikis. Implementation of the indirect assessment method for I-129 and Cs-135 accumulation in the RBMK-1500 reactor coolant purification system, Nucl. Eng. Des. 267, 132–139 (2014),
[12] S.D. Park, J.S. Kim, S.H. Han, Y.K. Ha, K.S. Song, and K.Y. Jee, The measurement of 129I in the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants, Appl. Radiat. Isot. 67(9), 1676–1682 (2009),
[13] M. Fuhrmann, S. Bajt, and M.A. Schoonen, Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and 125I tracer sorption experiments, Appl. Geochem. 13(2), 127–137 (1998),
[14] I. Bonhoure, A.M. Scheidegger, E. Wieland, and R. Dahn, Iodine species uptake by cement and CSH studied by I K-edge X-ray absorption spectroscopy, Radiochim. Acta 90, 647–651 (2002),
[15] M. Toyohara, M. Kaneko, H. Ueda, N. Mitsutsuka, H. Fujihara, T. Murase, and N. Saito, Iodine sorption onto mixed solid alumina cement and calcium compounds, J. Nucl. Sci. Tech. 37(11), 970–978 (2000),
[16] M. Toyohara, M. Kaneko, H. Ueda, N. Mitsutsuka, H. Fujihara, N. Saito, and T. Murase, Contribution to understanding iodine sorption mechanism onto mixed solid alumina cement and calcium compounds, J. Nucl. Sci. Tech. 39(9), 950–956 (2002),
[17] LST EN 196-6:2010 Methods of Testing Cement – Part 6: Determination of Fineness (Lithuanian Standards Board, 2010)
[18] J. Tits, A. Jakob, E. Wieland, and P. Spieler, Diffusion of tritiated water and 22Na+ through non-degraded hardened cement pastes, J. Contam. Hydrol. 61(1–4), 45–62 (2003),
[19] S. Yang, J. Li, Y. Lu, Y. Chen, and X. Wang, Sorption of Ni(II) on GMZ bentonite: Effects of pH, ionic strength, foreign ions, humic acid and temperature, Appl. Radiat. Isot. 67(9), 1600–1608 (2009),
[20] M. Honty, M. De Craen, L. Wang, J. Madejova, A. Czimerova, M. Pentrak, I. Striček, and M. Van Geet, The effect of high pH alkaline solutions on the mineral stability of the Boom Clay – Batch experiments at 60 °C, Appl. Geochem. 25(6), 825–840 (2010),
[21] I. Neretnieks, Development of a simple model for the simultaneous degradation of concrete and clay in contact, Appl. Geochem. 43, 101–113 (2014),
[22] D. Kaplan and G. Iverson, I-129 Test and Research to Support Disposal Decisions (2001),
[23] M.I. Ojovan, G.A. Varlackova, Z.I. Golubeva, and O.N. Burlaka, Long-term field and laboratory leaching tests of cemented radioactive wastes, J. Hazard. Mater. 187(1–3), 296–302 (2011),
[24] M. Atkins and F.P. Glasser, Application of portland cement-based materials to radioactive waste immobilization, Waste Manag. 12(2–3), 105–115 (1992),
[25] D.A. Sverjensky and K. Fukushi, Anion adsorption on oxide surface: inclusion of the water dipole in modeling the electrostatics of ligand exchange, Environ. Sci. Technol. 40(1), 263–271 (2006),