[PDF]    http://dx.doi.org/10.3952/physics.v55i3.3148

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 55, 191–199 (2015)


THERMOPHYSICAL AND MECHANICAL PROPERTIES OF BISPHENOL A EPOXY RESIN FILLED WITH MULTIWALLED CARBON NANOTUBES
Anna Borisova, Tatiana Glaskova-Kuzmina, and Andrey Aniskevich
Institute of Polymer Mechanics, University of Latvia, 23 Aizkraukles Street, LV-1006 Riga, Latvia
E-mail: anna.borisova@pmi.lu.lv

Received 22 May 2015; revised 11 June 2015; accepted 29 September 2015

Dilatometric tests, thermal mechanical analysis (TMA), quasistatic tensile tests, hydrostatic weighting, and scanning electron microscopy (SEM) were performed on the multiwalled carbon nanotube (MWCNT)/epoxy nanocomposite (NC) with different filler content (c = 0–3.8% wt.) in order to determine the influence of MWCNT content on the thermophysical and mechanical properties of NC. The experimental results show the physical properties versus the nanofiller content and the existence of the optimal MWCNT content (1% wt.) in epoxy resin that maximally improves the thermophysical properties of NC in comparison with unfilled epoxy. Thus, NC with 1% wt. filler content shows the maximal decrease of thermal expansion coefficient by 68%, the maximal increase of glass transition temperature and tensile strength by 23 °C and 18%, respectively. Comparing the results it can be seen that after exceeding the defined optimal filler content over 1% wt. the investigated properties get worse. The correlation between the investigated mechanical and thermophysical properties is estimated and reported.
Keywords: carbon nanotubes, epoxy resin, nanocomposite
PACS: 61.48.De


ŠILUMINĖS IR MECHANINĖS BISFENOLIO A EPOKSIDINĖS DERVOS, UŽPILDYTOS DAUGIASIENIAIS ANGLIES NANO VAMZDELIAIS, SAVYBĖS
Anna Borisova, Tatiana Glaskova-Kuzmina, Andrey Aniskevich
Latvijos universitetas , Ryga, Latvija


References / Nuorodos

[1] J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 2002) pp. 368–455,
http://dx.doi.org/10.1002/pi.1643
[2] P. LeBaron, Z. Wang, and T.I. Pinnavaia, Polymerlayered silicate nanocomposites: an overview, Appl. Clay Sci. 15, 11–29 (1999),
http://dx.doi.org/10.1016/S0169-1317(99)00017-4
[3] K. Aniskevich, O. Starkova, J. Jansons, and A. Aniskevich, Viscoelastic properties of a silica-filled styrene-butadiene rubber under uniaxial tension, Mech. Compos. Mater. 46, 375–386 (2010),
http://dx.doi.org/10.1007/s11029-010-9154-x
[4] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Progr. Mater. Sci. 56, 1178–1271 (2011),
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
[5] M. Moniruzzaman and K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules 39, 5194–5205 (2006),
http://dx.doi.org/10.1021/ma060733p
[6] D.R. Paul and L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer 49(15), 3187–3204 (2008),
http://dx.doi.org/10.1016/j.polymer.2008.04.017
[7] I. Vera-Agullo, A. Gloria-Pereira, H. Varela-Rizo, J.L. Gonzales, and I. Martin-Gullon, Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites, Compos. Sci. Techn. 69, 1521–1532 (2009),
http://dx.doi.org/10.1016/j.compscitech.2008.11.032
[8] H.S. Khare and D.L. Burris, Quantitative method for measuring nanocomposite dispersion, Polymer 51, 719–729 (2010),
http://dx.doi.org/10.1016/j.polymer.2009.12.031
[9] Z.K. Chen, J.P. Yang, Q.Q. Ni, S.Y. Fu., and Y.G. Huang, Reinforcement of epoxy resins with multi-walled walled carbon nanotubes for enhancing cryogenic mechanical properties, Polymer 50, 4753–4759 (2009),
http://dx.doi.org/10.1016/j.polymer.2009.08.001
[10] M. Abdalla, D. Dean, M. Theodore, J. Fielding, . Nyairo, and G. Price, Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties, Polymer 51, 1614–1620 (2010),
http://dx.doi.org/10.1016/j.polymer.2009.05.059
[11] R.D. Maksimov, J. Bitenieks, E. Plume, J. Zicans, and R. Merijs Meri, The effect of introduction of carbon nanotubes on the physicomechanical properties of poly vinylacetate, Mech. Compos. Mater. 46(3), 237–242 (2010),
http://dx.doi.org/10.1007/s11029-010-9142-1
[12] L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review, Polymer 48, 719–729 (2007),
http://dx.doi.org/10.1016/j.polymer.2007.06.046
[13] A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S.V. Lomov, A.V.V. Willem, and I. Verpoest, The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix, Compos. Appl. Sci. Manuf. 41, 532–538 (2010),
http://dx.doi.org/10.1016/j.compsitesa. 2010.01.001
[14] A. Martone, C. Formicola, M. Giordano, and M. Zarrelli, Reinforcement efficiency of multiwalled carbon nanotube/epoxy nano composites, Compos. Sci. Tech. 70, 1154–1160 (2010),
http://dx.doi.org/10.1016/j.compscitech.2010.03.001
[15] A. Martone, V. Faiella, V. Antonucci, M. Giordano, and M. Zarrelli, The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix, Compos. Sci. Tech. 71, 1117–1123 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.04.002
[16] H.W. Wang, H.W. Zhou, R.D. Peng, and L. Mishnoevsky Jr., Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Compos. Sci. Tech. 71, 980–988 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.03.003
[17] S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate composites, Compos. B Eng. 39, 933–961 (2008),
http://dx.doi.org/10.1016/j.compositesb.2008.01.002
[18] S.G. Prolongo, M. Campo, M.R. Gude, R. Chaos-Moran, and A. Urena, Thermo-physical characterization of epoxy resin reinforced by amino-functionalized carbon nanofibers, Compos. Sci. Tech. 69, 349–357 (2009),
http://dx.doi.org/10.1016/j.compscitech.2008.10.018
[19] A. Montazeri, K. Pourshamsian, and M. Riazian, Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/ epoxy composite using dynamic mechanical thermal analysis, Mater. Des. 36, 408–414 (2012),
http://dx.doi.org/10.1016/j.matdes.2011.11.038
[20] V.K. Srivastava, Modeling and mechanical performance of carbon nanotube/epoxy resin composites, Mater. Des. 39, 432–436 (2012),
http://dx.doi.org/10.1016/j.matdes.2012.02.039
[21] T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A. Aniskevich, and M. Giordano, Method of quantitative analysis of filler dispersion in composite systems with spherical inclusions, Compos. Sci. Tech. 71, 1543–1549 (2011),
http://dx.doi.org/10.1016/j.compscitech.2011.06.009
[22] T. Glaskova, M. Zarrelli, A. Aniskevich, M. Giordano, L. Trinkler, and B. Berzina, Quantitative optical analysis of filler dispersion degree in MWCNT-epoxy nanocomposite, Compos. Sci. Tech. 72, 477–481 (2012),
http://dx.doi.org/10.1016/j.compscitech.2011.11.029
[23] Technical data sheet of LH289 and H289 products, provided by Havel Composites company, 2009,
http://www.havel-composites.cz