[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3274

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 35–41 (2016)

Andrius Laurikėnasa, Jurgis Barkauskasa, Jonas Reklaitisb, Gediminas Niaurac, Dalis Baltrūnasb, and Aivaras Kareivaa
aDepartment of Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: andrius.laurikenas@chf.vu.lt
bInstitute of Physics, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
cInstitute of Chemistry, Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania

Received 7 September 2015; revised 31 October 2015; accepted 25 March 2016

In this study, iron (III) acetate was synthesized using acetic acid/hydrogen peroxide type synthesis. The obtained material was characterised using thermogravimetric analysis (TG), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX), infrared (IR) spectroscopy and Mössbauer spectroscopy. The chemical composition, microstructure and properties of iron (III) acetate were investigated and discussed. The results of XRD analysis showed that the synthesized iron (III) acetate is amorphous. The obtained iron (III) acetate is a potential candidate as a precursor for the synthesis of iron metal-organic frameworks (MOFs).
Keywords: TG analysis, SEM, XRD, FTIR spectroscopy, Mössbauer spectroscopy, iron acetate, MOFs
PACS: 81.05.-t, 81.16.Be, 81.20.Ka, 81.90.+c


Andrius Laurikėnasa, Jurgis Barkauskasa, Jonas Reklaitisb, Gediminas Niaurac, Dalis Baltrūnasb, Aivaras Kareivaa
aVilniaus universiteto Neorganinės chemijos katedra, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva
cFizinių ir technologijos mokslų centro Chemijos institutas, Vilnius, Lietuva

Aprašyta, kaip acto rūgšties / vandenilio peroksido metodu susintetintas ir pakartotinai 96,5 % etanolyje iškristalintas geležies (III) acetatas. Susintetinti ir pakartotinai kristalinti pavyzdžiai buvo ištirti termogravimetrinės (TG) analizės, rentgeno spindulių difrakcinės (XRD) analizės, Fourier transformacijos infraraudonosios (FTIR) spektroskopijos, skenuojančios elektroninės mikroskopijos (SEM) ir Mössbauer spektroskopijos metodais. Nustatyta, kad geležies (III) acetato terminis skilimas oro atmosferoje baigiasi ties 320 °C. Ištirtas ir aptartas geležies (III) acetato fazinis grynumas bei kristališkumas. XRD tyrimų rezultatai leido padaryti išvadą, kad susintetintas geležies (III) acetatas buvo iš dalies amorfinis. Susintetintas geležies (III) acetatas buvo sudarytas iš nereguliarių 50–80 μm dydžio strypelių. Tačiau perkristalinus, etanolyje buvo gauti 85–100 μm dydžio plokštuminiai kristalitai. Parodyta, kad taip susintetintas geležies (III) acetatas gali būti sėkmingai panaudotas kaip pradinė medžiaga metalo organinėms struktūroms (MOFs) gauti.

References / Nuorodos

[1] K.I. Turte, S.G. Shova, V. Meriacre, M. Daniec, and Y.A. Simonov, Synthesis and structure of trinuclear iron acetate. J. Struct. Chem. 43, 108–117 (2002),
[2] B.N. Figgis and G.B. Robertson, Crystal-molecular structure and magnetic properties of Cr3(CH3.COO)6 O Cl.5H2O, Nature 205, 694–695 (1965),
[3] J. Burgess and M.V. Twigg, in: Encyclopedia of Inorganic Chemistry, ed. R. Bruce King (2011),
[4] R.C. Paul, R.C. Narula, and S.K. Vasisht, Iron (III) acetates, Trans. Metal Chem. 3, 35–38 (1978),
[5] K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, and M. Sebela, Superparamagnetic maghemite nanoparticles from solid-state synthesis – Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization, Biomaterials 30, 2855–2863 (2009),
[6] J.R. Friedman and M.P. Sarachik, Single-molecule nanomagnets, Annu. Rev. Cond. Matter Phys. 1, 109–128 (2010),
[7] F.M. Duarte, F.J. Maldonado-Hodar, and L.M. Madeira, Influence of the iron precursor in the preparation of heterogeneous Fe/activated carbon Fenton-like catalysts, Appl. Catal. A 458, 39–47 (2013),
[8] D. Nastou, B. Fernandez-Fernandez, U. Elewa, L. Gonzalez-Espinoza, E. Gonzalez-Parra, M.D. Sanchez-Nino, and A. Ortiz, Next-generation phosphate binders: Focus on iron-based binders, Drugs 74, 863–877 (2014),
[9] M. Diab and T. Mokari, Thermal decomposition approach for the formation of alpha-Fe2O3 mesoporous photoanodes and an alpha-Fe2O3/CoO hybrid structure for enhanced water oxidation, Inorg. Chem. 53, 2304–2309 (2014),
[10] Z.U. Rahman, Y.L. Dong, C.L. Ren, Z.Y. Zhang, and X.G. Chen, Protein adsorption on citrate modified magnetic nanoparticles, J. Nanosci. Nanotechnol. 12, 2598–2606 (2012),
[11] T. Wang, S. Zhou, C.H. Zhang, J.B. Lian, Y. Liang, and W.X. Yuan, Facile synthesis of hematite nanoparticles and nanocubes and their shape-dependent optical properties, New J. Chem. 38, 46–49 (2014),
[12] K.H. Shen, J.W. Wang, Y. Li, Y.S. Wang, and Y. Li, Preparation of magnetite core–shell nanoparticles of Fe3O4 and carbon with aryl sulfonyl acetic acid, Mater. Res. Bull. 48, 4655–4660 (2013),
[13] M.Y. Zhu and G.W. Diao, Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange, J. Phys. Chem. C 115, 18923–18934 (2011),
[14] X. Pedro, J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47, 3942 (2013),
[15] M.M. Pendergast and E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4, 1946–1971 (2011),
[16] M. Cazacu, A. Vlad, C. Turta, and G. Lisa, New iron–cobalt clusters with silicon-containing dicarboxylic acids, Centr. Eur. J. Chem. 10, 1079–1086 (2012),
[17] S.Kr. Das, S.P. Mahantaa, K.K. Bania, Oxidative coupling of 2-naphthol by zeolite-Y supported homo and heterometallic trinuclear acetate clusters, RSC Adv. 4, 51496–51509 (2014),
[18] C.E. Sumner Jr, Interconversion of dinuclear and oxo-centered trinuclear cobaltic acetates, Inorg. Chem. 27, 1320–1327 (1988),
[19] P. Rathi, D.P. Singh, and P. Surain, Synthesis, characterization, powder XRD and antimicrobial-antioxidant activity evaluation of trivalent transition metal macrocyclic complexes, Compt. Rendus Chem. 18, 430–437 (2015),
[20] N. Abdullah, M.H. Elsheikh, N.M.J.N. Ibrahim, S.M. Said, M.F.M. Sabri, M.H. Hassan, and A. Marlina, Magnetic, thermal, mesomorphic and thermoelectric properties of mononuclear, dimeric and polymeric iron(II) complexes with conjugated ligands, RSC Adv. 5, 50999–51007 (2015),
[21] C.X. Yang, H.B. Ren, and X.P. Yan, Fluorescent metal organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution, Anal. Chem. 85, 7441–7446 (2013),
[22] M. Pilloni, F. Padella, G. Ennas, S.R. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, and A. Scano, Liquid-assisted mechanochemical synthesis of an iron carboxylate metal organic framework and its evaluation in diesel fuel desulfurization, Micropor. Mesopor. Mater. 213, 14–21 (2015),
[23] S.K. Xian, J.J. Peng, Z.J. Zhang, Q.B. Xia, H.H. Wang, and Z. Li, Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures, Chem. Eng. J. 270, 385–392 (2015),
[24] X.M. Quan, Y.D. Liu, and H.J. Choi, Magnetorheology of iron associated magnetic metal-organic framework nanoparticle, J. Appl. Phys. 117, 17C732 (2015),
[25] R. Sibille, T. Mazet, B. Malaman, Q.R. Wang, E. Didelot, and M. François, Site-dependent substitutions in mixed-metal metal-organic frameworks: A case study and guidelines for analogous systems, Chem. Mater. 27, 133–140 (2015),
[26] I.E. Grey, H.E.A. Brand, M.S. Rumsey, and Y. Gozukara, Ultra-flexible framework breathing in response to dehydration in liskeardite, [(Al, Fe16(AsO4)9(OH)21(H2O)11)]·26H2O, a natural open-framework compound, J. Solid State Chem. 228, 146–152 (2015),
[27] M.A.A. Elmasry, A. Gaber, and E.M.H. Khater, Thermal decomposition of Ni(II) and Fe(III) acetate and their mixture, J. Therm. Anal. 47, 757–763 (1996),
[28] F. Quiles and A. Burneaus, Infrared and Raman spectra of alkaline-earth and copper (II) acetates in aqueous solutions, Vibr. Spectr. 16, 105–117 (1998),
[29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B (John Wiley and Sons, Inc., New York, 1997),
[30] K. Ito and H.J. Bernstein, The vibrational spectra of the formiate, acetate, and oxalate ions, Canad. J. Chem. 4, 170–178 (1956),
[31] K.M. Parida, T. Mishra, D. Das, and S.N. Chintalpudi, Thermal transformation of trinuclear Fe (III) acetate complex intercalated montmorillonite, Appl. Clay Sci. 15, 463–475 (1999),
[32] N. Malathi and S.P. Puri, Mössbauer-effect study of iron (III) acetate and its chloro-derivatives, J. Phys. Soc. Jpn. 29, 108–111 (1970),
[33] J.H. Yoon, S.B. Choi, Y.J. Oh, M.J. Seo, and Y.H. Jhon, A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3(DMF)3.5, Catal. Today 120, 326–327 (2007),
[34] S. Zhang, Z. Jiao, and W. Yao, A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples, J. Chrom. A 1371, 74–75 (2014),