[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3275

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 42–48 (2016)

Jonas Šakalys, Ernesta Meinorė, and Kęstutis Kvietkus
State Research Institute Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania
E-mail: ernesta.pesliakaite@gmail.com

Received 19 June 2015; revised 28 September 2015; accepted 25 March 2016

Volcanic pollutants emitted during the Grimsvötn volcano eruption in Iceland on 21 May 2011 were unexpectedly captured from 24 until 29 May 2011 at the Institute of Physics, Vilnius. Measurements were performed using an Aerodyne quadrupole aerosol mass spectrometer. This paper aims to address the question whether the extent of neutralization is dependent on the aerosol particle size in submicron range particles (PM1). Data from two episodes of volcanic pollutants in advected air masses were chosen for examination. The first episode lasted from 0700 to 1400 UTC 25 May and the second episode lasted from 0400 until 1100 UTC 26 May. It was observed that the extent of acidic sulfate particle neutralization with atmospheric ammonia depends on the aerosol particle size. The extent of neutralization decreased when the particle aerodynamic diameter increased. Particles with an aerodynamic diameter of few tenths of nanometres tended to be fully neutralized and those with a consecutively increasing diameter of up to 1 μm were only partially neutralized. The assessment of ambient ammonia flux onto the adjacent aerosol particle surface was performed. It was shown that the flux of ammonia can vary approximately from 30 to 74 μg m–2 h–1.
Keywords: Q-AMS, PM1 aerosol particles, neutralization extent, sulfuric particles, ammonia
PACS: 92.60.Mt, 92.60.Sz, 92.60.Zc


Jonas Šakalys, Ernesta Meinorė, Kęstutis Kvietkus
Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Matavimai buvo atlikti Vilniuje, Fizinių ir technologijos mokslų centro Fizikos institute. Duomenų analizei buvo pasirinkti du epizodai 2011 m. gegužės mėn. 25–26 d., kai oro masės į matavimo vietą atnešė išsiveržusio Grimsvötn vulkano išmestus teršalus. Submikroninės aerozolio dalelių (PM1) frakcijos cheminė sudėtis ir cheminių komponenčių koncentracijos pasiskirstymas pagal aerozolio dalelių dydį buvo nustatyti AERODYNE kvadrupoliniu aerozolio masės spektrometru (Q-AMS). Remiantis eksperimento duomenimis, buvo įvertintas rūgštinių sulfatų neutralizacijos amoniaku laipsnis. Pirmojo epizodo metu mažesnėse nei 100 nm aerozolio dalelėse rūgštiniai sulfatai visiškai neutralizuoti amoniaku, o kuo dalelės didesnės, tuo neutralizacijos laipsnis mažesnis. Antrojo epizodo metu vaizdas ne toks ryškus, nes su oro masėmis buvo atnešti susimaišę pirmosiomis ir vėlesnėmis valandomis išmesti teršalai. Pirmojo epizodo amonio ir sulfatų koncentracijos aerozolio dalelėse logaritminio normalinio pasiskirstymo pagal jų dydį analizė parodė, kad atmosferoje esantis amoniakas pateko ant rūgštinių sulfatų turinčių dalelių paviršiaus pakeliui su oro masėmis joms keliaujant iki matavimų vietos. Šio epizodo duomenys leidžia įvertinti amoniako srautą į aerozolio dalelių paviršių. Vidutinis amoniako srautas į dalelių paviršių buvo 30–74 μg m–2 h–1. Šias vidutines vertes reikėtų vertinti atsargiai, nes meteorologinės sąlygos, lydėjusios ateinančias oro mases, nebuvo žinomos.

References / Nuorodos

[1] M.M. Halmer, H.-U. Schmincke, and H.-F. Graf, The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, J. Volcanol. Geotherm. Res. 115, 511–528 (2002),
[2] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007),
[3] M. Guffanti, T.J. Casadevall, and K. Budding, Encounters of Aircraft with Volcanic Ash Clouds: a Compilation of Known Incidents 1953–2009, U.S. Geological Survey Data Series 545, Version 1.0, plus 4 appendixes including the Compilation Database (2010),
[4] J.A. Adame, M.D. Valenti-Pia, and M. Gil-Ojeda, Impact evaluation of potential volcanic plumes over Spain, Atmos. Res. 160, 39–49 (2015),
[5] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R. Modini, R. Dupuy, I. Rimselyte, R. Ramonet, K. Kvietkus, Z. Ristovski, H. Berresheim, and C. O'Dowd, Volcanic sulphate and Arctic dust plumes over the North Atlantic Ocean, Atmos. Environ. 43(32), 4968–4974 (2009),
[6] V.M. Kerminen, J.V. Niemi, H. Timonen, M. Aurela, A. Frey, S. Carbone, S. Saarikoski, K. Teinilä, J. Hakkarainen, J. Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo, Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011, Atmos. Chem. Phys. 11, 12227–12239 (2011),
[7] K. Kvietkus, J. Šakalys, J. Didžbalis, I. Garbarienė, N. Špirkauskaitė, and V. Remeikis, Atmospheric aerosol episodes over Lithuania after the May 2011 volcano eruption at Grimsvötn, Iceland, Atmos. Res. 122, 93–101 (2013),
[8] S.N. Behera, M. Sharma, V.P. Aneja, and R. Balasubramanian, Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. Res. 20(11), 8092–8131 (2013),
[9] A.A. Mensah, R. Holzinger, R. Otjes, A. Trimborn, Th.F. Mentel, H. ten Brink, B. Henzing, and A. Kiendler-Scharr, Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009, Atmos. Chem. Phys. 12(10), 4723–4742 (2011),
[10] J. Liggio, S.-M. Li, A. Vlasenko, C. Stroud, and P. Makar, Depression of ammonia uptake to sulfuric acid aerosols by competing uptake of ambient organic gases, Environ. Sci. Technol. 45(7), 2790–2796 (2011),
[11] J.A. Fisher, D.J. Jacob, Q. Wang, R. Bahreini, C.C. Carouge, M.J. Cubison, J.E. Dibb, T. Diehl, J.L. Jimenez, E.M. Leibensperger, M.B.J. Meinders, H.O.T. Pye, P.K. Quinn, S. Sharma, A. van Donkelaar, and R.M. Yantosca, Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring, Atmos. Environ. 45, 7301–7318 (2011),
[12] S.T. Martin, H.M. Hung, R.J. Park, D.J. Jacob, R.J.D. Spurr, K.V. Chance, and M. Chin, Effects of the physical state of tropospheric ammonium–sulfate–nitrate particles on global aerosol direct radiative forcing, Atmos. Chem. Phys. 4, 183–214 (2004),
[13] K.J. Baustian, M.E. Wise, and M.A. Tolbert, Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles, Atmos. Chem. Phys. 10, 2307–2317 (2010),
[14] P.K. Quinn, T.S. Bates, E. Baum, N. Doubleday, A.M. Fiore, M. Flanner, A. Fridlind, T.J. Garrett, D. Koch, and S. Menon, Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys. 8, 1723–1735 (2008),
[15] G. Biskos, P.R. Buseck, and S.T. Martin, Hygroscopic growth of nucleation-mode acidic sulfate particles, Aerosol. Sci. 40, 338–347 (2009),
[16] L. Skrabalova, D. Brus, T. Anttila, V. Zdimal, and H. Lihavainen, Growth of sulphuric acid nanoparticles under wet and dry conditions, Atmos. Chem. Phys. 14, 6461–6475 (2014),
[17] M. Kulmala, L. Laakso, K.E.J. Lehtinen, I. Riipinen, M. Dal Maso, T. Anttila, V.-M. Kerminen, U. Horrak, M. Vana, and H. Tammet, Initial steps of aerosol growth, Atmos. Chem. Phys. 4, 2553–2560 (2004),
[18] P.H. Mcmurry, H. Takano, and G.R. Anderson, Study of the ammonia (gas)–sulfuric acid (aerosols) reaction rate, Environ. Sci. Technol. 17(6) (1983),
[19] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop, Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol. 33(1–2), 49–70 (2000),
[20] J.L. Jimenez, J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X.F. Zhang, K.A. Smith, J.W. Moris, and P. Davidovits, Ambient aerosol sampling using the aerodyne aerosol mass spectrometer, J. Geophys. Res. 108(D7), 8245–8258 (2003),
[21] J.D. Allan, J.L. Jimenez, P.I. Williams, M.R. Alfara, K.N. Bower, J.T. Jane, H. Coe, and D.R. Worsnop, Quantitative sampling using Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis, J. Geophys. Res. 108(D3), 4090–4100 (2003),
[22] K. Kvietkus, J. Šakalys, I. Rimšelytė, J. Ovadnevaitė, V. Remeikis, and V. Špakauskas, Characterization of aerosol sources at urban and background sites in Lithuania, Lith. J. Phys. 51(1), 65–74 (2011),
[23] I. Garbarienė, K. Kvietkus, J. Šakalys, J. Ovadnevaitė, and D. Čeburnis, Biogenic and anthropogenic organic matter in aerosol over Continental Europe: source characterization in the east Baltic region, J. Atmos. Chem. 69(2), 159–174 (2012),
[24] R.R. Draxler and G.D. Rolph, HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model Access via National Oceanic and Atmospheric Administration (NOAA) ARL READY Website (NOAA Air Resources Laboratory, College Park, MD, 2003), accessed: February 2015,
[25] N. Metropolis and S. Ulam, The Monte Carlo Method, J. Amer. Stat. Assoc. 44, 335–341 (1949),
[26] R. Glasow, N. Bobrowski, and C. Kern, The effects of volcanic eruptions on atmospheric chemistry, Chem. Geol. 263, 131–142 (2009),
[27] H. Bao, S. Yu, and D.Q. Tong, Massive volcanic SO2 oxidation and sulfate aerosol deposition in Cenozoic North America, Nature 465, 909–912 (2010),
[28] T.H. Gan, P. Hield, B. Boere, M. Bentley, T. Cogdon, P.J. Hanhela, B. Anderson, and R. Gillett, in: Proceedings of 15th ETH-Conference on Combustion Generated Nanoparticles (Zurich, Switzerland, June 26–29, 2011)
[29] B.J. Turpin and H.J. Lim, Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol. 35(1), 602–610 (2001),
[30] L. Xing, T.M. Fu, J.J. Cao, S.C. Lee, G.H. Wang, K.F. Ho, M.C. Cheng, C.F. You, and T.J. Wang, Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols, Atmos. Chem. Phys. 13, 4307–4318 (2013),
[31] C. Mohr, P.F. DeCarlo, M.F. Heringa, R. Chirico, J.G. Slowik, R. Richter, C. Reche, A. Alastuey, X. Querol, R. Seco, J. Pe-uelas, J.L. Jiménez, M. Crippa, R. Zimmermann, U. Baltensperger, and A.S.H. Prévôt, Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos. Chem. Phys. 12, 1649–1665 (2012),
[32] Q. Zhang, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, and J.L. Jimenez, Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes, J. Geophys. Res. 110, D07S09 (2005),
[33] J.M. Flores, R.Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, and Y. Rudich, Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties, Atmos. Chem. Phys. 12, 5511–5521 (2012),
[34] R. Jeanicke, Atmospheric aerosols and global climate, J. Aerosol Sci. 11, 577–588 (1980),