[PDF]    http://dx.doi.org/10.3952/physics.v56i1.3277

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 56, 55–65 (2016)

Vilius Poderysa, Marija Matulionytė-Safinėa,b, Dainius Rupšysb, and Ričardas Rotomskisa,b
aBiomedical Physics Laboratory, National Cancer Institute, P. Baublio 3b, LT-08406 Vilnius, Lithuania
bBiophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: ricardas.rotomskis@nvi.lt

Received 26 November 2015; revised 22 January 2016; accepted 25 March 2016

Bovine serum albumin stabilized gold nanoclusters (BSA-Au nanoclusters) have been widely studied due to their possible applications in biomedicine as sensors, fluorescent or multi-modality markers, and therapeutic agents. Synthesis and optical properties of these nanoclusters have been extensively investigated; however, there is still very little data on photostability of BSA-Au nanoclusters. Photostability of BSA-Au nanoclusters is of major importance for a variety of applications, such as material sensing and fluorescence imaging. Herein we demonstrate that after synthesis the BSA-Au solution has two photoluminescence (PL) bands peaking at 468 and 660 nm. Nevertheless, a different behaviour of the PL bands at 468 and 660 nm upon irradiation indicates that only band at 660 nm is related to PL of Au nanoclusters. BSA-Au nanoclusters exhibit great colloidal stability and do not undergo irreversible changes when heated up to 65 °C. However, irradiation of BSA-Au nanoclusters causes a wavelength dependent decrease of intensity and a hypsochromic shift of the PL band at 660 nm which is proportional to the delivered dose. The shift of the PL band at 660 nm could occur due to loss of several gold atoms in Au nanoclusters and/or due to deterioration of a nanoparticle coating layer. We have also demonstrated that the photostability of BSA-Au nanoclusters increases in the cell growth medium.
Keywords: photoluminescent gold nanoclusters, bovine serum albumin, spectral properties, stability, irradiation,
atomic force microscopy
PACS: 78.67.Bf


Vilius Poderysa, Marija Matulionytė-Safinėa,b, Dainius Rupšysb, Ričardas Rotomskisa,b
aNacionalinio vėžio instituto Biomedicininės fizikos laboratorija, Vilnius, Lietuva
bLazerinių tyrimų centro Biofotonikos grupė, Vilnius, Lietuva

Pastaruoju metu jaučio serumo albuminu stabilizuoti aukso nanoklasteriai (JSA-Au NK) sulaukė didelio susidomėjimo dėl galimo šių nanodalelių taikymo biomedicinoje. Šio tipo nanodalelės gali būti taikomos kaip fluorescenciniai ar daugiafunkciai žymenys, jutikliai, terapiniai agentai. JSA-Au nanoklasterių sintezė ir optinės savybės plačiai tiriamos, tačiau iki šiol literatūroje yra labai mažai duomenų apie šių nanodalelių fotostabilumą. Žinios apie švitinimo poveikį JSA-Au NK yra itin svarbios norint juos sėkmingai taikyti optinėje diagnostikoje ir terapijoje. Šviežiai susintetintas JSA-Au NK tirpalas turi dvi fotoliuminescencijos juostas: ties 468 ir 660 nm. JSA-Au NK pasižymi dideliu koloidiniu stabilumu, išlieka stabilūs juos kaitinant iki 65 °C. Mūsų atlikti tyrimai parodė, kad švitinant JSA-Au nanoklasterių tirpalą skirtingo bangos ilgio spinduliuote švitinimo poveikis fotoliuminescencijos juostoms ties 468 ir 660 nm yra skirtingas ir juosta ties 468 nm nepriklauso baltyme susidariusiam Au nanoklasteriui. Švitinant JSA-Au NK stebimas fotoliuminescencijos juostos ties 660 nm trumpabangis poslinkis. Šis efektas (tikriausiai susijęs su Au NK irimu) yra didesnis, kai švitinama trumpesnio bangos ilgio spinduliuote.

References / Nuorodos

[1] J. Zheng, J.T. Petty, and R.M. Dickson, High quantum yield blue emission from water-soluble Au8 nanodots, J. Am. Chem. Soc. 125(26), 7780–7781 (2003),
[2] S.W. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, and R.L. Whetten, Gold nanoelectrodes of varied size: transition to molecule-like charging, Science 280(5372), 2098–2101 (1998),
[3] S. Empedocles and M. Bawendi, Spectroscopy of single CdSe nanocrystallites, Acc. Chem. Res. 32(5), 389–396 (1999),
[4] J.P. Xie, Y.G. Zheng, and J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters, J. Am. Chem. Soc. 131(3), 888–889 (2009),
[5] H. Wei, Z.D. Wang, L.M. Yang, S.L. Tian, C.J. Hou, and Y. Lu, Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor, Analyst 135(6), 1406–1410 (2010),
[6] K. Chaudhari, P.L. Xavier, and T. Pradeep, Understanding the evolution of luminescent gold quantum clusters in protein templates, ACS Nano 5(11), 8816–8827 (2011),
[7] E.S. Shibu, B. Radha, P.K. Verma, P. Bhyrappa, G.U. Kulkarni, S.K. Pal, and T. Pradeep, Functionalized Au22 clusters: synthesis, characterization and patterning, ACS Appl. Mater. Interfaces 1(10), 2199–2210 (2009),
[8] R.C. Jin, H.F. Qian, Z.K. Wu, Y. Zhu, M.Z. Zhu, A. Mohanty, and N. Garg, A methodology for synthesizing atomically precise gold nanoclusters, J. Phys. Chem. Lett. 1(19), 2903–2910 (2010),
[9] Y.L. Xu, J. Sherwood, Y. Qin, D. Crowley, M. Bonizzoni, and Y.P. Bao, The role of protein characteristics in the formation and fluorescence of Au nanoclusters, Nanoscale 6(3), 1515–1524 (2014),
[10] X. Yuan, Y. Yu, Q.F. Yao, Q.B. Zhang, and J.P. Xie, Fast synthesis of thiolated Au25 nanoclusters via protection-deprotection method, J. Phys. Chem. Lett. 3(17), 2310–2314 (2012),
[11] Z.W. Wu, C. Gayathri, R.R. Gil, and R.C. Jin, Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry, J. Am. Chem. Soc., 131(18), 6535–6542 (2009),
[12] D.E. Jiang, M. Walter, and J. Akola, On the structure of a thiolated gold cluster: Au44(SR)282–, J. Phys. Chem. C 114(38), 15883–15889 (2010),
[13] X.M. Wen, P. Yu, Y.R. Toh, and J. Tang, Structure-correlated dual fluorescent bands in BSA-protected Au25 nanoclusters, J. Phys. Chem. C 116(21), 11830–11836 (2012),
[14] S.L. Raut, D. Shumilov, R. Chib, R. Rich, Z. Gryczynski, and I. Gryczynski, Two photon induced luminescence of BSA protected gold clusters, Chem. Phys. Lett. 561, 74–76 (2013),
[15] P. Yu, X.M. Wen, Y.R. Toh, and J. Tang, Temperature-dependent fluorescence in Au10 nanoclusters, J. Phys. Chem. C 116(11), 6567–6571 (2012),
[16] S. Raut, R. Chib, R. Rich, D. Shumilov, Z. Gryczynski, and I. Gryczynski, Polarization properties of fluorescent BSA protected Au25 nanoclusters, Nanoscale 5(8), 3441–3446 (2013),
[17] M. Matulionytė, R. Marcinonytė, and R. Rotomskis, Photoinduced spectral changes of photoluminescent gold nanoclusters, J. Biomed. Opt. 20(5), 051018 (2015),
[18] H. Kawasaki, H. Yamamoto, H. Fujimori, R. Arakawa, Y. Iwasaki, and M. Inada, Stability of the DMFprotected Au nanoclusters: photochemical, dispersion, and thermal properties, Langmuir 26(8), 5926–5933 (2010),
[19] H. Kawasaki, K. Yoshimura, K. Hamaguchi, and R. Arakawa, Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection, Anal. Sci. 27(6), 591–596 (2011),
[20] C.A.J. Lin, T.Y. Yang, C.H. Lee, S.H. Huang, R.A. Sperling, M. Zanella, J.K. Li, J.L. Shen, H.H. Wang, H.I. Yeh, W.J. Parak, and W.H. Chang, Characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications, ACS Nano 3(2), 395–401 (2009),
[21] Y.F. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G. Heath, Y. Zhang, L. Wu, and D.J. Zhou, Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging, Nanoscale 5(3), 1009–1017 (2013),
[22] L.H. Jin, L. Shang, S.J. Guo, Y.X. Fang, D. Wen, L. Wang, J.Y. Yin, and S.J. Dong, Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose, Biosens. Bioelectron. 26(5), 1965–1969 (2011),
[23] X.X. Wang, Y.Y. Wang, H.B. Rao, and Z. Shan, A sensitive fluorescent assay for trypsin activity in biological samples using BSA-Au nanoclusters, J. Brazil. Chem. Soc. 23(11), 2011–2015 (2012),
[24] H.W. Li, Y. Yue, T.Y. Liu, D.M. Li, and Y.Q. Wu, Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver(I) ions in aqueous solutions, J. Phys. Chem. C 117(31), 16159–16165 (2013),
[25] X. Wu, X.X. He, K.M. Wang, C. Xie, B. Zhou, and Z.H. Qing, Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo, Nanoscale 2(10), 2244–2249 (2010),
[26] A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H. Muhammed, T. Pradeep, S. Nair, and M. Koyakutty, Molecular-receptor-specific, nontoxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging, Nanotechnology 21(5), 055103 (2010),
[27] A.L. Zhang, Y. Tu, S.B. Qin, Y. Li, J.Y. Zhou, N. Chen, Q. Lu, and B.B. Zhang, Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging, J. Colloid. Interf. Sci. 372, 239–244 (2012),
[28] G.Y. Sun, L. Zhou, Y.L. Liu, and Z.B. Zhao, Biocompatible Gd-III-functionalized fluorescent gold nanoclusters for optical and magnetic resonance imaging, New J. Chem. 37(4), 1028–1035 (2013),
[29] Z. Wu and R. Jin, On the ligand’s role in the fluorescence of gold nanoclusters, Nano Lett. 10(7), 2568–2573 (2010),
[30] X. Le Guevel, B. Hotzer, G. Jung, K. Hollemeyer, V. Trouillet, and M. Schneider, Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy, J. Phys. Chem. C 115(22), 10955–10963 (2011),
[31] Y. Moriyama, D. Ohta, K. Hachiya, Y. Mitsui, and K. Takeda, Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins, J. Protein Chem. 15(3), 265–272 (1996),
[32] S. Raut, R. Chib, S. Butler, J. Borejdo, Z. Gryczynski, and I. Gryczynski, Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters, Methods Appl. Fluoresc. 2(3) (2014),
[33] R. Chib, S. Butler, S. Raut, S. Shah, J. Borejdo, Z. Gryczynski, and I. Gryczynski, Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters, J. Lumin. 168, 62–68 (2015),
[34] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, Singapore, 2006) pp. 577–606,
[35] A.K. Wright and M.R. Thompson, Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence, Biophys. J. 15, 137–141 (1975),
[36] J. Zheng, P.R. Nicovich, and R.M. Dickson, Highly fluorescent noble-metal quantum dots, Annu. Rev. Phys. Chem. 58, 409–431 (2007),
[37] X.M. Wen, P. Yu, Y.R. Toh, A.C. Hsu, Y.C. Lee, and J. Tang, Fluorescence dynamics in BSA-protected Au25 nanoclusters, J. Phys. Chem. C 116(35), 19032–19038 (2012),
[38] B. Mali, A.I. Dragan, J. Karolin, and C.D. Geddes, Photophysical characterization and α-type delayed luminescence of rapidly prepared Au clusters, J. Phys. Chem. C 117(32), 16650–16657 (2013),
[39] P.L. Xavier, K. Chaudhari, P.K. Verma, S.K. Pal, and T. Pradeep, Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET, Nanoscale 2(12), 2769–2776 (2010),
[40] T. Das, P. Ghosh, M.S. Shanavas, A. Maity, S. Mondal, and P. Purkayastha, Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen, Nanoscale 4(19), 6018–6024 (2012),
[41] A.N. Kuznetsov, B. Ebert, G. Lassmann, and A.B. Shapiro, Adsorption of small molecules to bovine serum albumin studied by the spin-probe method, Biochim. Biophys. Acta 379(1), 139–146 (1975),
[42] V.J.C. Lin and J.L. Koenig, Raman studies of bovine serum albumin, Biopolymers 15(1), 203–218 (1975),
[43] J. Oakes, Thermally denatured proteins. Nuclear magnetic resonance, binding isotherm and chemical modification studies of thermally denatured bovine serum albumin, J. Chem. Soc., Faraday Trans. 1, 72, 228–237 (1976),
[44] R. Wetzel, M. Becker, J. Behlke, H. Billwitz, S. Böhm, B. Ebert, H. Hamann, J. Krumbiegel, and G. Lassmann, Temperature behaviour of human serum albumin, Eur. J. Biochem. 104(2), 469–478 (1980),
[45] V. Poderys, M. Matulionyte, A. Selskis, and R. Rotomskis, Interaction of water-soluble CdTe quantum dots with bovine serum albumin, Nanoscale Res. Lett. 6, 1–6 (2011),
[46] W. Zhang, Y. Li, J. Niu, and Y. Chen, Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects, Langmuir 29(15), 4647–4651 (2013),
[47] M. Misawa and J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations, Nanomedicine 7(5), 604–614 (2011),
[48] H. Kawasaki, S. Kumar, G. Li, C.J. Zeng, D.R. Kauffman, J. Yoshimoto, Y. Iwasaki, and R.C. Jin, Generation of singlet oxygen by photoexcited Au25(SR)18 clusters, Chem. Mater. 26(9), 2777–2788 (2014),