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Summary. We present a control matrix design algorithm for stabilization of unstable periodic orbits in autonomous systems using the
time-delayed feedback control, when the orbits have an odd number of real Floquet multipliers larger than unity. Due to the so-called
odd-number theorem such orbits have been considered as uncontrollable by time-delayed feedback methods. However, the theorem
has been refuted for autonomous systems by a counterexample and recently a corrected version of the odd number theorem has been
proved. Our algorithm is based on relationship between Floquet multipliers of the system controlled by time-delayed and proportional
feedback. The efficiency of our approach is demonstrated with the Lorenz system.

Motivation

Stabilization of unstable periodic orbits (UPOs) using a time-delayed feedback control (TDFC) is an important issue in
control theory. The TDFC was successfully implemented in quite diverse experimental systems from different fields of
science. However, Nakajima [1] formulated a theorem, which states that unstable periodic orbits with an odd number of
real Floquet multipliers (FMs) larger than unity cannot be stabilized by TDFC. The theorem seemed to be supported by
experimental and numerical evidence for both autonomous and nonautonomous systems, but ten years after Nakajima’s
publication Fiedler et al. [2] have shown by a counterexample that the theorem is false for autonomous systems (for non-
autonomous systems the theorem is valid). Fiedler et al. considered an equation for a normal form of subcritical Hopf
bifurcation that has an UPO with one unstable FM and showed that it can be stabilized by the TDFC. Later on different
authors demostrated that the control matrix devised by Fiedler et al. works close to a subcritical Hopf bifurcation in other
examples, but no examples were considered far away from a bifurcation point. Here our aim is to present a practical recipe
for a design of the control matrix when the UPO is far away from a bifurcation point.

Control matrix design algorithm: Application for the Lorenz system

Let’s say we have an n-dimensional dynamical system ẋ(t) = f (x(t)) with an UPO x(t) = p(t) = p(t+ T ), which we
seek to stabilize using TDFC:

ẋ(t) = f (x(t)) +K[x(t− τ)− x(t)], (1)

where K is a constant control matrix. If delay time τ is equal to the UPO period T then the UPO p(t) of the free system
is also the solution of the controlled system (1) for any K. But if the delay time τ is close but not equal to T then in
the system (1) exists a periodic solution which is close to p(t). This mismatched periodic solution has a new period Θ,
which depends on τ and K. Recently Hooton and Amann [3] proved a corrected version of the odd number theorem for
autonomous systems, which states that p(t) is an unstable periodic solution of the controlled system (1) for τ = T if the
condition

(−1)m lim
τ→T

τ − T

τ −Θ(K, τ)
< 0 (2)

holds. Here m is a number of real FMs larger than unity for the periodic solution p(t) of the free system. We see that if
m is odd then the stabilization of the periodic solution p(t) is possible only if the factor β = limτ→T (τ − T )/(τ −Θ) is
negative. Therefore we need to expand Θ in terms of a small mismatch τ − T up to the second order. This was done in
[4, 5] and it allows us to rewrite β in a more useful form:

β = 1 +
∑n

ij
KijCij . (3)

Here Kij is the i, j-th element of the control matrix and Cij =
∫ T

0
ρi(t)ṗj(t)dt, where ρi(t) is the i-th component of the

phase response curve of the UPO and ṗj(t) is a derivative of the j-th component of the UPO. Note that the coefficients
Cij in (3) are independent of the control parameters K and τ . Thus by appropriate choice of K the factor β can be made
negative. However, this condition is not sufficient for the successful control. We introduce additional criteria [6] which we
derive from relationship between the FMs of the proportional and time-delayed feedback control. First let us rewrite the
control matrix in the form K = κK̃ where κ is a scalar control gain and K̃ is a matrix with at least one element equal to
−1 or 1 and other elements in the interval [−1, 1]. For each K̃ we can choose κ in such a way as to make β < 0. Without
loss of the generality we assume that sum

∑n
ij K̃ijCij is negative, since this can be always achieved by appropriate choice

of the sign of the matrix K̃. In order to overcome the condition (2) the control gain has to be higher than its threshold
value:

κ > κ∗ ≡ −
(∑n

ij
K̃ijCij

)−1

. (4)

Now let us consider the system under proportional feedback control (PFC):

ẋ(t) = f (x(t)) + gK̃[p(t)− x(t)]. (5)
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Here a real-valued scalar g is a gain of the PFC. The information about the real FMs in the TDFC system can be obtained
from the FMs of the PFC system using the following relationship [6]:

λ = Λ(g), κ = g/ [1− exp (−Λ(g)T )] . (6)

Here Λ(g) is the Floquet exponent (FE) in the PFC system and λ is the FE in the TDFC system. If the UPO of the free
system has one real FM larger than unity (case m = 1) then there are two important branches Λ(g): trivial (Λ0(0) = 0) and
unstable (Λu(0) > 0). In the Lorenz system with the standard parameters f(x) = [10(x2−x1), x1(28−x3)−x2, x1x2−
8/3x3]

T the successful stabilization of the period-one UPO can be easily achieved for the PFC case by choosing only one
nonzero element K̃22 = 1 of the matrix K̃ (see Figure 1 (a)). However, transforming the two PFC branches to the TDFC
case (see Figure 1 (b)) using (6) we reveal that the unstable branch “crosses” the zero only for κ → ∞. The successful
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Figure 1: Three typical scenarios for the dependence of the FEs of the Lorenz system on the feedback gain for PFC (upper row)
and TDFC (lower row) at different matrixes K̃: (a) and (b) [0, 0, 0; 0, 1, 0; 0, 0, 0]; (c) and (d) [0, 0, 0;−1, 0, 0.3; 0, 0, 0]; (e) and (f)
[0,0,0;-1,0,0.5;0,0,0]. In (a), (c) and (e), blue solid and red dashed curves represent trivial and unstable FEs (both real-valued) for PFC,
respectively. In (b), (d) and (f), the corresponding curves show reconstructed values of FEs for TDFC. Green dotted curves in (c), (d)
and (e) show real parts of complex conjugate FEs.

stabilization in the TDFC case can be achieved only if the trivial and the unstable branches in the PFC case coalesce (see
Figure 1 (c) and (e)). In this scenario, the two branches in the PFC system transforms into one branch of the TDFC system
(see Figure 1 (d) and (f)). However, only (f) case is potentially successful, since the branch λ(κ) crosses the zero with the
negative slope. The threshold κ∗ of the control gain where the branch of the TDFC system crosses zero λ(κ∗) = 0 and
the slope dλ

dκ

∣∣
κ=κ∗ at the intersection point can be computed from the Taylor expansion of the trivial branch Λ0(g) of the

PFC system at the point g = 0:
Λ0(g)T = ag + bg2 +O(g3). (7)

By substituting (7) into (6) and taking the limit g → 0 we get κ∗ = a. This gives an alternative way to compute the
threshold gain, since expansion coefficients a and b can be simply evaluated from the PFC system for any matrix K̃. The
condition for the negative slope dλ

dκ

∣∣
κ=κ∗ < 0 can be again obtained from (7) and (6):

1− 2b/a2 < 0. (8)

The successful stabilization of the period-one orbit of the Lorenz system is shown in Fig. 2.
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Figure 2: The dynamics of the successful stabilization of the period-one orbit in the Lorenz system. The matrix K̃ is chosen the same
as in Fig. 1 (e) and (f). (a) dynamics of the second variable. (b) dynamics of the difference ∆x2(t) = x2(t)− x2(t− τ). The control
gain κ = 0.865.
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