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Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems
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We demonstrate the emergence of the non-Abelian geometric potentials and thus the three-dimensional (3D)
spin-orbit coupling (SOC) for ultracold atoms without using the laser beams. This is achieved by subjecting
an atom to a periodic perturbation which is the product of a position-dependent Hermitian operator V̂ (r) and
a fast oscillating periodic function f (ωt ) with a zero average. To have a significant spin-orbit coupling, we
analyze a situation where the characteristic energy of the periodic driving is not necessarily small compared
to the driving energy h̄ω. Applying a unitary transformation to eliminate the original periodic perturbation, we
arrive at a non-Abelian (noncommuting) vector potential term describing the 3D SOC. The general formalism is
illustrated by analyzing the motion of an atom in a spatially inhomogeneous magnetic field oscillating in time. A
cylindrically symmetric magnetic field provides the SOC involving the coupling between the spin F and all three
components of the orbital angular momentum (OAM) L. In particular, the spherically symmetric monopole-type
synthetic magnetic field B ∝ r generates the 3D SOC of the L · F form, which resembles the fine-structure
interaction of hydrogen atom. However, the strength of the SOC here goes as 1/r2 for larger distances, instead
of 1/r3 as in atomic fine structure. Such a longer-ranged SOC significantly affects not only the lower states of
the trapped atom, but also the higher ones. Furthermore, by properly tailoring the external trapping potential, the
ground state of the system can occur at finite OAM, while the ground state of hydrogen atom has zero OAM.
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I. INTRODUCTION

The periodic driving enriches topological [1–11] and
many-body [8,12–29] properties of physical systems. This can
be used to generate the artificial gauge fields for ultracold
atoms [30–42] and photonic systems [43–48], as well as to
alter the topological properties of condensed-matter systems
[2,4,49–55]. In many cases the periodic driving changes in
time, which applies inter alia to experiments on ultracold
atoms where the periodic driving is often slowly ramped up
[27]. In such a situation the evolution of the system can be
described in terms of a slowly changing effective Floquet
Hamiltonian and a fast oscillating micromotion operator [56].
In particular, this is the case if the time periodic Hamiltonian
is a product of a slowly changing operator V̂ (λ(t )) and a
fast oscillating function f (ωt ) = f (ωt + 2π ) with a zero
average, where the vector λ(t ) represents a set of slowly
changing parameters [56,57]. If the operator V̂ (λ(t )) does not
commute with itself at different times, the effective evolution
of the periodically driven system can be accompanied by non-
Abelian (noncommuting) geometric phases after the vector
λ(t ) undergoes a cyclic change and returns to its original value
[56–58].

Here we study a way to generate non-Abelian geometric
potentials when the incident parameter λ(t ) is replaced by a
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radius vector of a particle r = xex + yey + zez representing a
dynamical variable, and a kinetic-energy operator is added.
If the operator V̂ (r) featured in the periodic coupling term
V̂ (r) f (ωt ) does not commute with itself at different posi-
tions, [V̂ (r), V̂ (r′)] �= 0, the adiabatic evolution of the system
within a Floquet band can be accompanied by a non-Abelian
(noncommuting) geometric vector potential providing a three-
dimensional (3D) spin-orbit coupling (SOC). The 2D and 3D
SOC can be also generated optically by using degenerate
eigenstates of the atom-light coupling operator known as
dressed states [59–68]. This requires a considerable amount
of effort [64,66–68]. Furthermore, the formation of the SOC is
accompanied by unwanted heating due to the radiative decay
of atoms in the dressed states.

The present approach does not rely on the degenerate atom-
light dressed states. Instead, employment of the time-periodic
interaction of the form V̂ (r) f (ωt ) provides degenerate Flo-
quet states [57]. The spatial and temporal dependence of these
states yields the non-Abelian vector potential and thus the 3D
SOC. The general formalism is illustrated by analyzing the
motion of an atom in a spatially inhomogeneous magnetic
field oscillating in time. We study a cylindrically symmetric
magnetic field and analyze the coupling between the atomic
spin F and the orbital angular momentum (OAM) L for such
a system. In particular, the monopole-type magnetic field
generates the 3D SOC of the L · F form involving the coupling
between the atomic spin F and OAM.

We show that the strength of the L · F SOC is long ranged
and goes as 1/r2 for larger distances, rather than as 1/r3,
as experienced by an electron in a Coulomb potential via
the fine-structure interaction [69]. For such larger distances
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exceeding a characteristic SOC range r0, the SOC contribution
reduces to −L2/2mr2 and thus it cancels the centrifugal
term featured in the kinetic-energy operator. Therefore, the
SOC significantly affects all atomic states. In the case of the
(quasi)spin 1/2 atom, the SOC makes the atomic states nearly
degenerate with respect to the orbital quantum number l for a
fixed total angular momentum quantum number j = l ± 1/2
and a fixed radial quantum number nr . Furthermore, for a
harmonic trap the ground state with j = 1/2 and l = 0 has
a slightly lower energy than the one with j = 1/2 and l = 1.
The situation can be changed by adding an extra antitrapping
potential for small r. In that case the ground state of the system
acquires a nonzero orbital quantum number l = 1 and thus is
affected by the SOC. This is a consequence of the periodic
driving; normally the ground state of a spherically symmetric
SOC system corresponds to l = 0.

The paper is organized as follows. The general formalism
is presented in the subsequent Sec. II. We define a periodically
driven system and apply a unitary transformation eliminating
the time-oscillating part of the original Hamiltonian. The
evolution of the transformed state vector is then governed
by a new Hamiltonian W (ωt ) containing a vector potential
type contribution Â(r, ωt ) which gives the spin-dependent
momentum shift and provides the SOC in the effective Flo-
quet Hamiltonian. We also present a general analysis of the
vector potential and discuss ramping of the periodic diving.
In Sec. III, as a specific example, we study the spin in an os-
cillating magnetic field. We present an explicit expression for
the time-periodic vector potential, and consider the coupling
between the spin and OAM for a cylindrically symmetric mag-
netic field. In Sec. IV we analyze the SOC for the spherically
symmetric monopole magnetic field. Section V considers
the adiabatic condition and discusses possible experimental
implementations. Section VI presents concluding remarks.
Details of some technical calculations are contained in two
Appendixes A and B. In particular, in Appendix A we present
a way of producing the interaction of an atom with an effective
magnetic field violating the Maxwell equations, including the
monopole magnetic field [70].

II. PERIODICALLY DRIVEN SYSTEM WITH A
MODULATED DRIVING

A. Hamiltonian and equations of motion

Let us consider the center-of-mass motion of a quantum
particle such as an ultracold atom. The particle is subjected
to a periodic driving described by the operator V̂ (r) f (ωt ),
which is a product of a position-dependent Hermitian operator
V̂ (r) and a time-periodic function f (ωt + 2π ) = f (ωt ) with
a zero average

∫ π

−π
f (ωt )dt = 0. A hat over the operator V̂ (r)

indicates that it depends on the internal degrees of freedom of
the particle. The state-dependent operator V̂ (r) generally does
not commute with itself at different positions [V̂ (r), V̂ (r′)] �=
0. Including the kinetic energy, the system is described by the
time-periodic Hamiltonian Ĥ (ωt ) = Ĥ (ωt + 2π ) given by

Ĥ (ωt ) = p2

2m
+ V̂ (r) f (ωt ) + Vex(r), (1)

where p = −ih̄∇ is the momentum operator, m is the
mass of the particle, and we have also added an extra

potential Vex(r) to confine the particle in a trap. The exter-
nal potential is considered to be state independent, so that
[Vex(r),Vex(r′)] = 0.

The system is described by a state vector |φ(t )〉 obeying
the time-dependent Schrödinger equation (TDSE):

ih̄
∂

∂t
|φ(t )〉 = Ĥ (ωt )|φ(t )〉. (2)

An example of such a system is an atom in a spatially inho-
mogeneous magnetic field B(r) f (ωt ) with a fast oscillating
amplitude ∝ f (ωt ) and a slowly changing magnitude or direc-
tion of the amplitude B(r). In that case the position-dependent
part of the operator V̂ (r) f (ωt ) is given by

V̂ (r) = gF F̂ · B(r), (3)

where gF is a gyromagnetic factor and F̂ = F̂1ex + F̂2ey +
F̂3ez is the spin operator with the Cartesian components obey-
ing the commutation relations [F̂s, F̂q] = ih̄εsquF̂u. Here εsqu

is a Levi-Civita symbol and the summation over a repeated
Cartesian index u = x, y, z is implied. The operator V̂ (r) does
not commute with itself at different positions [V̂ (r), V̂ (r′)] �=
0 if B(r) and B(r′) are oriented along different axes. This
leads to the SOC for the spin in the spatially nonuniform mag-
netic field oscillating in time, to be studied in the subsequent
Secs. III–V.

B. Transformed representation

To have a significant SOC, we consider a situation where
the matrix elements of the periodic driving V̂ (r) f (ωt ) are
not necessarily small compared to the driving energy h̄ω.
In that case one cannot apply the high frequency expansion
[56,71,72] of an effective Floquet Hamiltonian in the original
representation. To bypass the problem, we go to a new repre-
sentation via a unitary transformation eliminating the operator
V̂ (r) f (ωt ):

R̂ = R̂(r, ωt ) = exp

[
−i

F (ωt )

h̄ω
V̂ (r)

]
, (4)

where F (θ ) is a primitive function of f (θ ) = dF (θ )/dθ with
a zero average [

∫ π

−π
F (θ ′)dθ ′ = 0] and a calligraphy letter F

is used to avoid confusion with the spin operator F featured
in Eq. (3). Since F (ωt ) = F (ωt + 2π ), the transformation
R̂(r, ωt ) = R̂(r, ωt + 2π ) has the same periodicity as the
original Hamiltonian Ĥ (ωt ) = Ĥ (ωt + 2π ).

The transformed state vector

|ψ (t )〉 = R̂†(r, ωt )|φ(t )〉 (5)

obeys the TDSE

ih̄
∂

∂t
|ψ (t )〉 = Ŵ (ωt )|ψ (t )〉 (6)

governed by the Hamiltonian

Ŵ (ωt ) = 1

2m
[p − Â(r, ωt )]2 + Vex(r), (7)

where a time-periodic vector potential type operator

Â(r, ωt ) = ih̄R̂†(r, ωt )∇R̂(r, ωt ) (8)

is added to the momentum operator p due to the position
dependence of the unitary transformation R̂(r, ωt ). On the
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other hand, the transformation R̂(r, ωt ) does not affect the
state-independent trapping potential Vex(r). The transformed
Hamiltonian Ŵ (ωt ) no longer contains the time-periodic term
V̂ (r) f (ωt ). The periodic driving is now represented by the op-
erator Â(r, ωt ) = Â(r, ωt + 2π ) featured in the transformed
Hamiltonian (7). This leads to the SOC to be studied in the
next subsection.

In this way the properly chosen transformation R̂(r, ωt )
eliminates the interaction operator V (r) f (ωt ) in the original
Hamiltonian (1). The position dependence of R̂(r, ωt ) yields
the spin-dependent momentum shift Â(r, ωt ) in Eq. (7), so the
SOC appears directly from the unitary transformation.

C. Floquet adiabatic approach

The transformed Hamiltonian Ŵ (ωt ) = Ŵ (ωt + 2π ) can
be expanded in the Fourier components:

Ŵ (ωt ) =
∞∑

n=−∞
W (n)einωt , (9)

with

Ŵ (n) = 1

2π

∫ π

−π

Ŵ (θ )e−inθ dθ. (10)

In what follows the driving energy h̄ω is assumed to be much
larger than the matrix elements of the Fourier components of
the transformed Hamiltonian Ŵ (n),

h̄ω � ∣∣Ŵ (n)
αβ

∣∣, (11)

where the superscript (n) refers to the nth Fourier component.
The condition (11) allows one to consider the adiabatic evo-
lution of the system in a selected Floquet band by neglect-
ing the nonzeroth (with n �= 0) Fourier components Ŵ (n) of
the transformed Hamiltonian Ŵ (ωt ). Thus one replaces the
exact evolution governed by the time-dependent transformed
Hamiltonian Ŵ (ωt ) by the approximate one governed by
the time-independent effective Floquet Hamiltonian Ŵeff(0) =
Ŵ (0) equal to the zeroth Fourier component:

ih̄
∂

∂t
|ψ (0)(t )〉 = Ŵ (0)|ψ (0)(t )〉, (12)

where |ψ (0)(t )〉 is the corresponding approximate state vector
representing the slowly changing part of the exact state vector
|ψ (t )〉. The slowly changing state vector |ψ (0)(t )〉 deviates
little from the exact time evolution of the state vector |ψ (t )〉
if the adiabatic condition (11) holds.

The effective Floquet Hamiltonian corresponding to the
transformed Hamiltonian (7) reads

Ŵ (0) = p2

2m
+ ŴSOC + V̂total(r), (13)

where

V̂total(r) = 1

2m
〈[Â(r, ωt )]2〉 + Vex(r) (14)

is the total scalar potential and

ŴSOC = − 1

2m
[Â(0)(r) · p + p · Â(0)(r)] (15)

describes the SOC emerging via the zeroth Fourier component
of the oscillating vector potential: Â(0)(r) = 〈Â(r, ωt )〉 =

1
2π

∫ π

−π
Â(r, θ )dθ . Here the brackets 〈. . .〉 signify the zero-

frequency component (the time average) of an oscillating
operator. In this way, the effective Hamiltonian Ŵ (0) is deter-
mined by the time averages of the oscillating vector potential
Â(r, ωt ) and its square. The vector potential Â(0)(r) generally
contains three noncommuting Cartesian components leading
to the 3D SOC. Note that the Floquet adiabatic approach ap-
plied here corresponds to the zero order of the high frequency
expansion [57,71–73] of the effective Floquet Hamiltonian
Weff = Ŵ (0) + O(1/ω).

The present perturbation analysis relies on the condition
(11) involving the Fourier components of the time-periodic
operator Â(r, ωt ) = Â(r, ωt + 2π ) given by Eq. (8). The
operator Â(r, ωt ) emerges via the r dependence of the ratio
F (ωt )

h̄ω
V̂ (r) featured in the exponent of the unitary transforma-

tion R̂(r, ωt ). Therefore, the operator Â(r, ωt ) is determined
by the spatial changes of the ratio V̂ (r)/ω, and the Floquet
adiabatic condition (11) requires the smallness of the spatial
changes of the operator V̂ (r) rather than the smallness of the
operator V̂ (r) itself with respect to the driving frequency ω.

The condition (11) can hold even if the matrix elements
of the periodic driving V̂ (r) f (ωt ) are not small compared to
the driving energy h̄ω. In such a situation the high frequency
expansion of the effective Hamiltonian [57,71–73] is not
applicable in the original representation where the evolution
is given by Eq. (2). Yet it is applicable in the transformed
representation corresponding to the equation of motion (6).
Therefore, the present approach allows one to realize the SOC
which is much larger than the one relying on the perturbation
treatment in the original representation, as it was done in a
very recent study [74]. The adiabatic condition (11) will be
analyzed in more detail for a spin in an oscillating magnetic
field in Sec. V A.

Returning to the original representation, the adiabatic evo-
lution of the state vector is given by

|φ(t )〉 ≡ |φ(ωt, t )〉 ≈ R̂(r, ωt )|ψ (0)(t )〉. (16)

Since R̂(r, ωt ) = R̂(r, ωt + 2π ), the original state vector
|φ(ωt, t )〉 = |φ(ωt + 2π, t )〉 is 2π periodic with respect to
the first variable. Therefore, R̂(r, ωt ) describes the fast mi-
cromotion of the original state vector |φ(ωt, t )〉. Additionally,
the state vector |φ(ωt, t )〉 changes slowly with respect to the
second variable due to the slow changes of the transformed
state vector |ψ (0)(t )〉.

D. Equation for Â(r, ωt ) and its expansion

To obtain an equation for the vector potential
Â = Â(r, ωt ), let us treat it as a function of the coordinate
r and a parameter c = c(ωt ) ≡ F (ωt )/h̄ω. Differentiating
Â(r, ωt ) = Â(r; c) with respect to c for fixed r, and using
Eqs. (4) and (8), one arrives at the following differential
equation for the Cartesian components Âu of the vector
potential:

∂Âu

∂c
= h̄

∂V̂

∂u
+ i[V̂ , Âu] (u = x, y, z), (17)

subject to the initial condition

Âu = 0 for c = 0. (18)
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A solution to Eq. (17) can be expanded in the powers of c ∝
1/ω, giving

Â(r, ωt ) = F (ωt )

ω
∇V̂ + i

F2(ωt )

2!h̄ω2
[V̂ ,∇V̂ ]

+ i2 F3(ωt )

3!h̄2ω3
[V̂ , [V̂ ,∇V̂ ]] + · · · . (19)

If for any r and r′ the commutator [V̂ (r), V̂ (r′)] = 0, then
only the first term remains in the expansion (19):

Â(r, ωt ) = F (ωt )

ω
∇V̂ , (20)

giving 〈Â(r, ωt )〉 = Â(0)(r) = 0. In that case no SOC is gen-

erated, and the time average 〈[Â(r, ωt )]
2〉 provides an extra

trapping potential in Eq. (14). In particular, this applies to a
state-independent potential V̂ (r) = V (r) for which the time-
periodic Hamiltonian (1) describes the Kapitza problem [73].

Here we go beyond the situation where [V̂ (r), V̂ (r′)] = 0,
so the commutators are nonzero in the expansion (19). As
a result, the vector potential Â(r, ωt ) has a nonzero aver-
age Â(0)(r) �= 0 providing the SOC which acts in all three
dimensions. Such a 3D SOC can be realized for a spinful
atom in an inhomogeneous magnetic field oscillating in time,
to be considered in Sec. III. In that case the vector potential
Â(r, ωt ) is obtained exactly in Eq. (24) which is valid for an
arbitrary driving frequency, not necessarily small compared
to the strength of the periodic driving. Thus the solution (24)
effectively takes into account all the terms in the expansion of
Â(r, ωt ) given by Eq. (19).

E. Ramping of the periodic perturbation

Up to now the operator V̂ (r) defining the periodic driving
in the Hamiltonian (1) was considered to be time independent,
so the driving was strictly periodic in time. The analysis can
be extended to a situation where the operator V̂ (r) has an
extra slow temporal dependence [56–58]. This can describe
ramping of the periodic perturbation. It is quite common to
have no periodic driving at an initial time t = tin and ramp up
the driving slowly afterwards over a time much larger than the
driving period T = 2π/ω. This can be described by a slowly
changing factor α(t ) multiplying V̂ (r):

V̂ (r, α(t )) = α(t )V̂ (r), (21)

where α(t ) changes smoothly from α(t ) = 0 at the initial
time t = tin to α(t ) = 1 at the final stage of the ramping. In
particular, Eq. (21) with V̂ (r) given by Eq. (3) describes a
spin in an oscillating magnetic field with a slowly ramped
amplitude B(r, α(t )) = α(t )B(r).

The slow temporal dependence of V̂ (r, α(t )) featured in
the unitary transformation R̂ provides an additional term
Ŵadd(r, ωt, t ) to the transformed Hamiltonian Ŵ (ωt, t ) [57]:

Ŵadd(r, ωt, t ) = −ih̄α̇R̂†(r, ωt, α)
∂R̂(r, ωt, α)

∂α
. (22)

The operator V̂ (r, α(t )) commutes with itself at different
times, [V̂ (r, α(t )), V̂ (r, α(t ′))] = 0, giving

Ŵadd(r, ωt, t ) = −F (ωt )α̇

ω

∂V̂ (r, α)

∂α
. (23)

Since 〈F (ωt )〉 = 0, the extra term Ŵadd(r, ωt, t ) averages to
zero and thus has no zero Fourier component Ŵ (0)

add (r, ωt, t ) =
0. In this way, the ramping of the periodic driving described by
Eq. (21) does not provide an extra contribution to the effective
Hamiltonian and thus does not affect the effective dynamics of
the system.

III. SPIN IN TIME-OSCILLATING MAGNETIC FIELD

A. Vector potential

The general formalism is illustrated by considering motion
of a spinful atom in a time-oscillating magnetic field with the
interaction operator V̂ (r) given by Eq. (3). In that case the
operator Â = Â(r, ωt ) can be derived exactly for an arbitrary
strength of the magnetic field. Specifically, by solving Eq. (17)
one arrives at the following Cartesian components of the
vector potential Â(r, ωt ):

Âu(r, ωt ) = aF (B · ∂B/∂u)(B · F̂)

B3

+ sin (aF )
[(B × ∂B/∂u) × B] · F̂

B3

+ [cos (aF ) − 1]
(B × ∂B/∂u) · F̂

B2
, (24)

where

a = BgF

ω
(25)

defines the frequency of the magnetic interaction in the units
of the driving frequency. Here we keep implicit the time
dependence of the oscillating function F = F (ωt ), as well as
the r dependence of B = B(r) and a = a(r). The derivation of
Eq. (24) is analogous to the one presented in the Appendix of
Ref. [57] subject to replacement of the time derivatives ∂V/∂t
and ∂B/∂t by the space derivatives −∂V/∂u and −∂B/∂u,
respectively.

B. Time-averaged vector potential and SOC term

To simplify the subsequent analysis, we assume the orig-
inal Hamiltonian (1) to have a time-reversal symmetry. This
is the case if the function f (ωt ) describing the periodic
driving is even: f (ωt ) = f (−ωt ) (subject to a proper choice
of the origin of time). Consequently the function F (ωt ) =
ω

∫ t
0 f (ωt ′)dt ′ featured in the vector potential Â(r, ωt ) is an

odd function: F (ωt ) = −F (−ωt ). In particular, this holds for
a harmonic driving with

f (ωt ) = cos (ωt ), F (ωt ) = sin (ωt ). (26)

For F (ωt ) = −F (−ωt ) the first two lines of Eq. (24) are odd
functions of time and thus average to zero, giving

Â(0)
u (r) = 〈cos (aF )〉 − 1

B2
(B × ∂B/∂u) · F̂. (27)

Note that, for the harmonic driving (26), the time average
〈cos (aF )〉 is given by the Bessel functions of the first kind:

〈cos (aF )〉 = J0(a), with J0(a) = 1

2π

∫ π

−π

eia sin θdθ.

(28)
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Substituting Eq. (27) into (15), the SOC term takes the
form

ŴSOC = 1

2m

[
1 − 〈cos (aF )〉

B2
Z · F̂ + Z† · F̂

1 − 〈cos (aF )〉
B2

]
,

(29)

where

Z = B ×
∑

u=x,y,z

∂B
∂u

pu (30)

is an orbital operator, which makes it clear that Eq. (29)
represents SOC.

In addition to the SOC term ŴSOC, the effective Hamil-
tonian (13) contains also the 〈[Â(r, ωt )]

2〉 term which is
featured in scalar potential Vtotal(r) given by Eq. (14). This
contribution is analyzed in Appendix B for specific configura-
tions of the magnetic field.

The form of the SOC term in Eq. (29) is valid for an
arbitrary magnetic configuration. However, to give a concrete
example and to make the physics more clear, in the next
subsection we consider a cylindrically symmetric magnetic
field given by Eq. (31). Subsequently in Sec. IV we analyze an
important particular situation where the magnetic field takes
the form of a monopole, in which case we can take advantage
of the spherical symmetry of the system and simplify the
calculations. In Appendix A we present details on how to
generate various effective magnetic fields with a nonzero di-
vergence field including the cylindrically symmetric magnetic
field (31) and the effective monopole field (33).

C. Cylindrical magnetic field

1. Magnetic field

Let us consider the magnetic field B = B(r), which
changes linearly in space and has a cylindric symmetry:

B(r) = α⊥(xex + yey) + αzzez, (31)

where the ratio between αz and α⊥ is considered to be arbi-
trary. By taking αz = −2α⊥, Eq. (31) describes a quadrupole
magnetic field [75]. On the other hand, for αz �= −2α⊥ the
cylindrically symmetric magnetic field has a nonzero diver-
gence and thus does not obey the Maxwell equation ∇ ·
B(r) = 0. In particular, this is the case for a spherically
symmetric monopole field corresponding to αz = α⊥ = α and
considered in Sec. IV.

2. SOC operator

The operator Z · F̂ entering Eq. (29) for the SOC operator
ŴSOC reads for the cylindrically symmetric magnetic field (31)

Z · F̂ = Z† · F̂ = α2
⊥LzF̂z + α⊥αz(LxF̂x + LyF̂y), (32)

where Lx, Ly, and Lz are the Cartesian components of
the OAM operator L = r × p. Note that the function
[1 − 〈cos (aF )〉]/B2 featured in Eq. (29) is cylindrically sym-
metric and thus preserves the z projection of the OAM for the
magnetic field (31).

The term LzF̂z in Eq. (32) provides the spin-dependent shift
to eigenenergies of the OAM operator Lz. On the other hand,
the term LxF̂x + LyF̂y = L+F̂− + L−F̂+ represents transitions

between different spin and OAM projection states described
by the raising or lowering operators L± = Lx ± iLy and F̂± =
F̂x ± iF̂y. Therefore, the present SOC has some similarities to
the coupling between the spin and OAM induced by Raman
laser beams carrying optical vortices [76–87]. Yet, unlike the
Raman case, now the coupling between the spin and OAM
is described by all three OAM projections Lx, Ly, and Lz as
long as α⊥ �= 0 and αz �= 0, so the coupling is truly three
dimensional. In particular, for a monopole magnetic field
where α⊥ = αz = α, Eqs. (29) and (32) yield a spherically
symmetric coupling between the spin and OAM ∝L · F̂ pre-
sented by Eq. (34) below.

IV. MONOPOLE FIELD

A. Effective Hamiltonian for monopole field

For αz = α⊥ = α, Eq. (31) reduces to the centrally sym-
metric monopolelike magnetic field

B = αr = 2ω

r0gF
r, (33)

where r0 = 2ω/αgF defines the radius r = r0 at which a
characteristic frequency of the magnetic interaction gF B/2 =
ωr/r0 becomes equal to the driving frequency ω. In such
a situation, the operator Z · F̂ = α2L · F̂ commutes with the
spherically symmetric magnetic field B = αr, so ordering of
operators is not important in the SOC term (29), giving

ŴSOC = h̄ωSOC(r)
L · F̂

h̄2 , (34)

where the frequency

ωSOC(r) = h̄

m

1 − 〈cos (2rF/r0)〉
r2

(35)

characterizes the SOC strength. On the other hand, the term

〈[Â(r, ωt )]
2〉 featured in the total scalar potential Vtotal(r) is

given by Eq. (B8) in Appendix B. Combining Eqs. (13), (14),
(34), (35), and (B8), the effective Hamiltonian takes the form

Ŵ (0) = p2

2m
+ h̄ωSOC(r)

[
L · F̂

h̄2 + r2F2 − (r · F̂)2

h̄2r2

]

+ 2

mr2
0

〈F2〉 (r · F̂)2

r2
+ Vex(r), (36)

where the spin-dependent operator (r · F̂)
2

emerges from the

〈[Â(r, ωt )]
2〉 term entering the total scalar potential (14).

Generally the operator (r · F̂)
2

does not commute with L2, and
thus mixes the states with different orbital quantum numbers

l . Specifically, the term (r · F̂)
2

can provide coupling between
orbit and spin or even spin tensor involving the radius vector r
rather than the momentum operator, as in Ref. [88]. However,
no such extra SOC appears for the spin-1/2 atom to be
considered next.
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FIG. 1. Radial dependence of the SOC energy ωSOC(r) given by
Eq. (35) for the sinusoidal driving (26) for which 〈cos (2rF/r0)〉 =
J0(2r/r0). The distance is measured in the units of r0 and the fre-
quency is measured in the units of the SOC frequency ω0 = ωSOC(0)
given by Eq. (44).

B. Spin 1/2

1. Effective Hamiltonian

Let us now consider the effective Hamiltonian (36) for a
spin-1/2 atom for which

F̂ = h̄

2
σ̂, (37)

where σ̂ = σ̂xex + σ̂yey + σ̂zez and σ̂x,y,z are the Pauli ma-

trices. In that case the operator (r · F̂)
2 = h̄2r2/4 is spin

independent and spherically symmetric, making L2 a con-
serving quantity. Using 2L · F̂ = Ĵ2 − L2 − F2, the effective
Hamiltonian (36) takes the form

Ŵ (0) = p2

2m
+ h̄ωSOC(r)

(
Ĵ2 − L2

2h̄2 + 1

8

)
+ Vex(r), (38)

where

Ĵ = L + F̂ (39)

is the total angular momentum, and a uniform energy shift
h̄2〈F2〉/2mr2

0 has been omitted in Eq. (38).
As one can see in Fig. 1, the SOC frequency ωSOC(r)

decreases with the radius r and goes as r−2 for distances
exceeding the SOC radius r0:

ωSOC(r) ≈ h̄

mr2
for r � r0. (40)

Such an asymptotic behavior of ωSOC(r) does not depend on
the magnetic-field strength, and is determined exclusively by
the ratio h̄/m. The asymptotic Hamiltonian

Ŵ (0) = p2

2m
+ 1

2mr2

(
Ĵ2 − L2 + h̄2

4

)
+ Vex(r) (r � r0)

(41)

FIG. 2. Dependence of eigenenergies Enr , j,l on j for l = j ∓ 1/2
and up to five lowest radial quantum numbers nr . The harmonic
trapping potential (43) is added. Panel (a) corresponds to a softer
trap with η = 0.5; panel (b) corresponds to a tighter trap with η = 2.
The spectrum is calculated for the sinusoidal (26) driving for which
〈cos (2rF/r0)〉 = J0(2r/r0).

contains a contribution ∝−L2 which cancels the centrifugal
term featured in the kinetic-energy operator

p2

2m
= − h̄2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)]
+ L2

2mr2
. (42)

Thus, if the atomic eigenfunctions extend over distances
exceeding the radius r0, the corresponding eigenenergies are
determined predominantly by the total angular momentum Ĵ2

and are nearly degenerate with respect to the orbital quantum
number l = j ∓ 1/2 for fixed j and fixed radial quantum
number nr , showing a peculiar manifestation of the SOC.
This is confirmed by numerical calculations presented in
Sec. IV B 2 and displayed in Fig. 2. The long-range behavior
of ωSOC(r) makes the SOC effects significant not only for the
lower atomic states, but also for higher ones situated further
away from the center. Note that for an electron in a Coulomb
potential ∝−1/r the SOC strength is shorter ranged and goes
as ∝r−3 [69], affecting mostly the lower electronic states
situated closer to r = 0.
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The SOC alone does not trap the atoms. Therefore, an
external trapping potential Vex(r) is needed to have bound
states, like in the case of the light induced geometric potentials
[80,89]. The external potential can be chosen freely. For
example, one can take Vex(r) to be a spherical harmonic
trapping potential

Vex(r) = m

8
η2ω2

0r2, (43)

where η defines the trapping frequency ωex = ηω0/2 and
ω0 = ωSOC(0) is the SOC frequency at zero distance. For the
sinusoidal driving (26) one has

ω0 = h̄

mr2
0

. (44)

2. Angular states

In what follows we shall consider a spherically sym-
metric external potential Vex(r) = Vex(r). The Hamiltonian
Ŵ (0) given by Eq. (38) contains the commuting operators
Ĵ2 and L2 characterized by the eigenvalues h̄2 j( j + 1) and
h̄2l (l + 1). The eigenstates | j, l, f , mj〉 of Ŵ (0) are thus de-
scribed by the quantum numbers j, l , f , and mj , with l −
f � j � l + f and f = 1/2. The eigenstates | j, l, f , mj〉 =
| j, l, f , mj (θ, φ)〉 are degenerate with respect to projection of
the total angular momentum − j � mj � j. They can be cast
in terms of the angular momentum states Yl,m(θ, φ) (the spher-
ical harmonics) and the spin states | f , m f 〉 with f = 1/2:

| j, l, f , mj (θ, φ)〉 =
l∑

ml =−l

∑
m f =± 1

2

Yl,ml (θ, φ)| f , m f 〉

× 〈l, ml , f , m f | j, mj〉, (45)

where θ and φ are the polar and azimuthal angles,
〈l, ml , f , m f | j, mj〉 is the Clebsch-Gordan coefficient, and the
summation is over the projections of the spin and the orbital
angular momentum with ml + m f = mj .

3. Radial eigenequation

The full eigenstate of the effective Hamiltonian (38) con-
tains also the radial part

|ψnr , j,l, f (r, θ, φ)〉 = | j, l, f , mj (θ, φ)〉ψnr , j,l, f (r), (46)

where nr is a radial quantum number. Substituting

ψnr , j,l, f ,mj (r) ≡ φnr , j,l, f ,mj (r)

r
, (47)

one arrives at the eigenvalue equation for the scaled radial
function φnr , j,l, f ,mj (r)[

− h̄2

2m

∂2

∂r2
+ Vj,l (r)

]
φnr , j,l, f ,mj (r) = Enr , j,lφnr , j,l, f ,mj (r),

(48)

subject to the condition φnr , j,l, f ,mj (0) = 0, where

Vj,l (r) =1

2

[
j( j + 1) − l (l + 1) + 1

4

]
h̄ωSOC(r)

+ h̄2l (l + 1)

2mr2
+ Vex(r) (49)

is the radial potential and Enr , j,l is an eigenenergy.

4. Analysis of eigenenergies

Figure 2 displays the dependence of the eigenenergies
Enr , j,l on j for l = j ∓ 1/2 and up to five lowest radial
quantum numbers nr . The calculations are carried out for
the sinusoidal driving, Eq. (26), and the harmonic trapping
potential given by Eq. (43) with η = 0.5 and η = 2. For a
softer trap (η = 0.5) and j � 3/2, there is an almost per-
fect degeneracy of the eigenenergies Enr , j,l with the same j
and nr but different l = j ∓ 1/2. For such a softer trap the
atomic wave functions extend to distances r � r0 in which
ωSOC(r) ≈ h̄/mr2, corresponding to the strong driving regime
(gF B/2 � ω). Consequently the l-dependent part of the SOC
term cancels the centrifugal term in Eq. (49), and the eigen-
states depend weakly on l . For a tighter trap (η = 2) the atom
is localized closer to the center leading to a larger difference
in the eigenenergies Enr , j,l with different l = j ∓ 1/2 but the
same j and nr .

It is noteworthy that an infinite set of degenerate eigen-
states (3D Landau levels [90]) is formed if a particle is sub-
jected to the SOC term ±ωCL · σ̂ with a constant frequency
ωC, and a 3D isotropic harmonic trap is added with the
frequency ωC [90–92]. The eigenstates with j = l ∓ 1/2 then
have eigenenergies h̄ωC(2nr + 1 ∓ 1/2), which depend only
on the principal quantum number nr and thus are degenerate
with respect to the l and j. In the present study the situation is
different. The SOC frequency ωSOC(r) decreases with the ra-
dius and has a special asymptotic behavior at large distances,
ωSOC(r) ≈ h̄/mr2, leading to pairs of close energy levels with
l = j ± 1/2 for fixed j, as discussed above.

For the sinusoidal driving, Eq. (26), the difference in the
radial potentials with l = j ± 1/2 for fixed j,

Vj (r) = Vj,l= j+1/2(r) − Vj,l= j−1/2(r)

= h̄(2 j + 1)J0(2r/r0)

mr2
, (50)

is determined by the Bessel function J0(2r/r0), which is
positive for distances 2r/r0 smaller than 2.4. Consequently,
the ground state with j = 1/2 and l = 0 has a slightly lower
energy than the one with j = 1/2 and l = 1, as one can
see in Fig. 2. The situation can be reversed by adding an
extra antitrapping potential for small r. Such a potential
pushes the atomic probability distribution to a region of larger
distances, 2r/r0 > 2.4, where the Bessel function J0(2r/r0)
becomes negative and reaches the maximum negative value
of −0.36 at 2r/r0 = 3.83. Figure 3 shows the difference in
the ground-state energies E = Ej= 1

2 ,l=1 − Ej= 1
2 ,l=0 for the

external trapping potential Vex(r) composed of a spherically
symmetric harmonic potential with η = 0.5 (upper plot) or
η = 2 (lower plot), and an additional hard-core potential of
a radius r = r∗ preventing the atom from being at distances
r � r∗. For η = 0.5 (η = 2) the energy difference E be-
comes negative at r∗/r0 = 0.14 (r∗/r0 = 0.55) and reaches
the maximum negative value of E = −0.019h̄ω0 (E =
−0.084h̄ω0) at r∗/r0 = 0.55 (r∗/r0 = 0.97).

In this way, the ground state of the system can be the state
with j = 1/2 and the orbital quantum number equal to l = 1
rather than l = 0. For conventional spherically symmetric
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FIG. 3. Energy difference E = Ej= 1
2 ,l=1 − Ej= 1

2 ,l=0 vs the ra-
dius r∗ of the additional hard core potential for an atom in a harmonic
trapping potential (43) with η = 0.5 [panel (a)] and η = 2 [panel
(b)]. The calculations are done for the sinusoidal driving (26) for
which 〈cos (2rF/r0)〉 = J0(2r/r0).

systems, such as the hydrogenlike atoms, the ground state
is always characterized by l = 0 and thus is not affected by
the SOC. The formation of the ground state with l = 1 is
now facilitated by the time-periodic driving which induces
a longer-ranged SOC ∝1/r2 and allows one to reverse the
sign of the potential difference Vj (r) in Eq. (50) due to
the change of sign in the Bessel function J0(2r/r0). Note that
the periodic driving can be also used to reverse the sign of
the matrix elements of tunneling of atoms in optical lattices
[17,93–95]. By shaking the lattice sufficiently strongly, the
Bessel function renormalizes the tunneling matrix elements,
causing them to change the sign [17,94,95].

V. ADIABATIC CONDITIONS AND IMPLEMENTATION

A. Adiabatic condition

The general adiabatic condition (11) was discussed in
Sec. II C. Now we will consider in more detail the adiabatic
condition for an atom in the magnetic field. Using Eqs. (7),
(11), (B1), and (B5), one arrives at the adiabatic condition for
the atom in a centrally symmetric magnetic field

ω � ω0, ω � ωkin, (51)

where ω0 = h̄/mr2
0 is the SOC frequency and h̄ωkin is the

kinetic energy of the atomic motion. The first requirement

in Eq. (51) is due to the [Â(r, ωt )]
2

term in the transformed
Hamiltonian Ŵ , Eq. (7), with the second one coming from
the mixed terms Â(r) · p and p · Â(r). A condition similar to
Eq. (51) can be obtained also for a more general cylindrically
symmetric magnetic field given by Eq. (31).

The adiabatic condition (51) does not rely on the smallness
of the frequency of the magnetic interaction gF B(r)/2 =
ωr/r0 compared to the driving frequency ω, so we do not
restrict ourselves to distances smaller than the SOC radius r0.
We only require the SOC frequency ω0 and the atomic kinetic
frequency ωkin to be much smaller than the driving frequency
ω. Hence the present approach allows one to study the SOC
at distances exceeding the ones accessible via the perturbative
treatment in the original representation. Specifically, the SOC
frequency ω0 = h̄/mr2

0 can now be considerably larger than
the one accessible by means of the original perturbation
approach [74] applicable if the radius of the atomic cloud is
much smaller than the SOC radius r0.

The frequency of magnetic interaction gF B(r)/2 = ωr/r0

reaches the driving frequency at r = r0. Consequently, one
can keep r0 fixed by simultaneously increasing both the
magnetic-field strength and the driving frequency until the
latter ω becomes sufficiently large compared to the SOC
frequency ω0 to fulfill the adiabatic condition (51).

In many-body systems there can be additional losses due to
atom-atom interactions. The two-body losses have been stud-
ied recently for a periodic driving of the form h̄k0σzz cos (ωt )
[96]. For the driving energy h̄ω exceeding both the kinetic
energy and the SOC energy h̄2k2

0/2m, the two-body heating
rate was shown to increase as

√
h̄ω due to an increase of the

final density of states and the energy of the quantum absorbed
h̄ω [96]. Yet the probability of such absorption events is
proportional to 1/

√
h̄ω and thus goes to zero in the limit

of an infinitely large driving frequency. Thus the many-body
heating can be minimized by increasing the driving frequency
and removing from the trap a handful of very fast atoms
which absorb the driving quantum h̄ω. This is essentially
the idea of evaporative cooling [97]. If h̄ω exceeds the trap
depth, then those few atoms absorbing the quantum of h̄ω are
automatically ejected from the trap which becomes shallow at
large energies or large distances. Such a trap can be produced
optically by focusing a number of laser beams within the
atomic cloud. The many-body effects will be explored in more
detail in a separate study.

B. Implementation

In analyzing the 3D SOC induced by the oscillating mag-
netic field B(r) f (ωt ) we used cylindrically or spherically
symmetric magnetic fields with the amplitude B(r) given
by Eqs. (31) or (33). Such a magnetic field generally has
a nonzero divergence and thus does not obey the Maxwell
equation. Yet one can produce interaction between the atom
and the magnetic field characterized by an effective mag-
netic field with a nonzero divergence. In particular, one can
generate the spherically symmetric monopole field given by
Eq. (33). As explained in detail in Appendix A, this can be
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done by taking the actual (real) magnetic field Breal entering
the original interaction operator V̂real(r, t ) = gF F̂ · Breal(r, t )
to contain a time-independent bias magnetic field B0ez and an
extra spatially inhomogeneous magnetic field proportional to
the time-periodic function f (ωt ):

Breal(r, t ) = B0ez + [B1(r) + B2(r) cos(ωBt )] f (ωt ), (52)

where the frequency ωB is considered to be in an exact reso-
nance with magnetic level splitting induced by the bias field:
ωB = gF B0. Furthermore, ωB is taken to be much larger than
the frequency of the periodic driving: ωB � ω. Transforming
the spin to the frame rotating at the frequency ωB via the
unitary transformation U given by Eq. (A4), one can then
apply the rotating wave approximation (RWA) and neglect the
fast oscillating terms ∝exp(±iωBt ) and ∝exp(±2iωBt ) in the
transformed interaction operator. Consequently one arrives at
the interaction of the spin with the time-periodic effective
magnetic field B(r) f (ωt ) characterized by the amplitude (see
Appendix A for more details)

B(r) = 1
2 B2x(r)ex + 1

2 B2y(r)ey + B1z(r)ez. (53)

In this way, one makes use of two unitary transformations.
The transformation U given by Eq. (A4) eliminates the fast
spin precession around the bias magnetic field at the frequency
ωB. This provides an effective coupling of the atom with the
effective magnetic field given by Eq. (53). Subsequently one
applies another unitary transformation R given by Eq. (4)
which eliminates the interaction operator gF F̂ · B(r) f (ωt ).
The position dependence of the unitary operator R = R(r, t )
yields then the SOC due to the spin-dependent momentum
shift in the kinetic-energy term of Eq. (7).

Using such an approach one can create various effec-
tive magnetic fields B(r) which do not necessarily obey the
Maxwell equations. In particular, by taking B1(r) and B2(r) to
be the quadrupole magnetic fields, one generates the cylindri-
cally symmetric field or the spherically symmetric monopole
field given by Eqs. (31) and (33), respectively; see Appendix
A and Ref. [70].

The method works if the frequency of the magnetic level
splitting ωB is much larger than the driving frequency ω.
In the experiment [98] with 87Rb atoms, the magnetic split-
ting frequency ωB = 2π × 4.81 MHz far exceeds the recoil
frequency ωrec which equals 2π × 3.77 kHz for the 780 nm
5 2S1/2 → 5 2P3/2 optical transition. Note that the bias mag-
netic field induces also the quadratic Zeeman shift (QZS) with
a frequency equal approximately to 6ωrec in the experiment
[98]. The unwanted QZS can be reduced by decreasing the
bias magnetic field. For example, by reducing ωB to 2π ×
50 kHz, the QZS decreases to 0.001ωrec, which is in the range
of the few Hz and thus can be completely neglected.

On the other hand, QZS can be used to produce an effective
quasi-spin-1/2 system for atoms characterized by larger spins
[41,99]. For this the oscillating magnetic field should be in
resonance with a selected pair of magnetic levels, and the QZS
makes the coupling with other spin states out of resonance.
For example, the magnetic field could resonantly couple the
mF = −1 and mF = 0 states of the F = 1 manifold of 87Rb
or 23Na atoms [41] representing the quasi-spin-up and -down
states, leaving the detuned mF = 1 state uncoupled, similar
to experiments on the Raman-induced SOC [98]. To create

the quasi-spin-1/2 system, the driving frequency ω should
be smaller than the frequency of the quadratic Zeeman shift
ωq. As mentioned above, ωq equals a few recoil frequencies
in the experiment [98]. The QZS can be further increased
by increasing the bias magnetic field to reach the condition
ωq � ωrec, so the driving frequency ω can be of the order of
the recoil frequency ωrec or a little above it. Therefore, the
SOC frequency ω0 = h̄/mr2

0 should then be smaller than the
recoil frequency to fulfill the adiabatic requirements (51). For
example, for 87Rb atoms, ω0 could be of the order of a few
tens to a few hundreds of Hz, which is comparable to typical
trapping frequencies. This provides the SOC radius r0 of the
order of a few optical wavelengths. In this way, by taking
a width of an optical trap to be of the order of ten optical
wavelengths, the SOC radius r0 would be within the trapped
atomic cloud, and the atoms would experience a substantial
SOC in the cloud.

VI. CONCLUDING REMARKS

We have considered a method of creating the non-Abelian
geometric potential and thus the 3D SOC for the center-of-
mass motion of the particle subjected to periodic driving.
The periodic perturbation is a product of a position-dependent
Hermitian operator V̂ (r) and a fast oscillating periodic func-
tion f (ωt ) with a zero average. To have a significant SOC,
we have analyzed a situation where the matrix elements of
the periodic operator V̂ (r) f (ωt ) are not necessarily small
compared to the driving energy h̄ω, so that one cannot ap-
ply the high frequency expansion of the effective Floquet
Hamiltonian [56,71–73] in the original representation. To
bypass the problem, we have applied a unitary transformation
which eliminates the original periodic perturbation and yields
an oscillating vector potential term. The resulting periodic
perturbation is no longer proportional to the driving frequency
ω, so the perturbation treatment is applicable to much stronger
driving (and thus over a larger range of distances) than in
the original representation. We have considered a situation
where V̂ (r) depends on internal (spin or quasispin) degrees
of freedom of the particle, and thus the operator V̂ (r) does
not necessarily commute with itself at different positions:
[V̂ (r), V̂ (r′)] �= 0. Consequently, the adiabatic evolution of
the system within a Floquet band is accompanied by a non-
Abelian (noncommuting) geometric vector potential provid-
ing the 3D SOC.

The periodic driving plays a vital role in our analysis.
Without the periodic driving the interaction is given by a
time-independent operator V (r), like in Ref. [70]. In that
case the spin adiabatically follows the magnetic field and is
fully polarized along local field direction [70]. In the present
situation, the interaction operator V (r) f (ωt ) contains also the
periodic function f (ωt ) with the zero average. Therefore, the
spin no longer adiabatically follows the magnetic field and
thus is no longer polarized along the local magnetic field.
Specifically, the operator V (r) f (ωt ) provides fully degenerate
Floquet bands [57]. The position dependence of these Floquet
eigenstates yields the spin-dependent momentum shift and
thus the spin-orbit coupling. Therefore, the current situa-
tion is very different from the case of the time-independent
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interaction V (r), where the eigenenergies of V (r) are nonde-
generate and thus the spin is polarized [70].

The general formalism has been illustrated by analyzing
motion of a spinful atom in a magnetic field oscillating in
time, subsequently concentrating on a spin-1/2 atom in a
cylindrically symmetric magnetic field. This yields the SOC
involving coupling between the spin and the orbital motion
described by all three components of the OAM operator L. In
particular, the time-oscillating monopole-type magnetic field
B ∝ r generates the 3D SOC of the L · F form. The strength
of this SOC goes as 1/r2 for larger distances, rather than 1/r3,
as for electrons in the Coulomb potential. Such a long-ranged
SOC significantly affects not only the lower states of the
trapped atom, but also the higher ones. In particular, the states
with l = j ± 1/2 are nearly degenerate with fix j and nr for
an atom characterized by the (quasi)spin 1/2. In the presence
of a harmonic external trapping potential, the ground state
with j = 1/2 and l = 0 has a slightly lower energy than the
one with j = 1/2 and l = 1. The situation can be reversed
by adding an extra antitrapping potential for small r, which
causes the ground state of the system to be characterized by
the orbital quantum number l = 1. The l = 1 ground state
is affected by the SOC, which can lead to interesting many-
body phases to be explored elsewhere. If the atom possesses
higher spin, more complicated SOC terms can be generated.
In this situation, the spin-dependent scalar potential featured
in Eq. (36) for the effective Hamiltonian Ŵ (0) can lead to an
additional coupling between orbit and spin or spin tensor. We
plan to address this topic in a future study.

Previously coupling between the spin and the linear mo-
mentum p was considered for ultracold atoms using time-
periodic sequences of magnetic pulses [35,36,40,41]. To gen-
erate the 2D or 3D coupling between the spin and linear
momentum p, the periodic driving involves rapid changes
of the magnetic-field direction [35,36]. This would be rather
complicated to implement experimentally. It is much more
straightforward to generate a sizable coupling between the
spin and the OAM using the method considered here. For this
one applies a simpler magnetic field with properly designed
spatial and temporal profiles rather than the alternating mag-
netic pulses. Therefore, the current scheme is more realistic
and can be implemented using experimental techniques cur-
rently available.

The 2D and 3D SOC can be also generated optically by
using a degeneracy of eigenstates of the atom-light coupling
operator [59–68], which involves a considerable amount of
effort [64,66–68]. The present approach does not require such
a degeneracy. Instead, the periodic driving yields degener-
ate Floquet states for the time-periodic interaction operator
V̂ (r) f (ωt ) in a straightforward way [57]. The spatial and
temporal dependence of the operator V̂ (r) f (ωt ) provides the
oscillating vector potential and hence the SOC. The present
SOC has also some similarities to the coupling between
the spin and OAM induced by Raman laser beams carrying
optical vortices [76–87]. Yet, unlike the Raman case, now
the coupling between the spin and OAM is described by all
three OAM projections Lx, Ly, and Lz, so the SOC is truly
three dimensional. Furthermore, our current scheme does not
involve laser fields, and hence does not suffer from Raman-
induced heating.
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APPENDIX A: GENERATION OF EFFECTIVE MAGNETIC
FIELD VIOLATING THE MAXWELL EQUATIONS

In this Appendix we will explain a way of obtaining the
coupling of an atom with an effective magnetic field which
does not necessarily have a zero divergence and/or a zero
curl [35,41,70]. In particular, the effective magnetic field can
describe a monopole-type field [70].

1. Original problem

In the original problem, the atom is coupled with an
actual (real) magnetic field Breal(r, t ) obeying the Maxwell
equations. The corresponding interaction operator reads

V̂real(r, t ) = gF F̂ · Breal(r, t ). (A1)

Let us consider a magnetic field

Breal(r, t ) = B0ez + [B1(r) + B2(r) cos(ωBt )] f (ωt ), (A2)

which is composed of a constant bias magnetic field B0ez

pointing along a unit Cartesian vector ez, and a time-
dependent term proportional to the periodic function f (ωt ) =
f (ωt + 2π ) oscillating in time with the frequency ω. The
latter term contains also a contribution ∝cos(ωBt ) oscillating
with a frequency ωB much larger than the driving frequency
ω. The frequency ωB is taken to be in an exact resonance with
the frequency of the spitting between the spin states induced
by the bias magnetic field, so that

ωB = gF B0, with ωB � ω. (A3)

Replacing cos(ωBt ) by cos(ωBt + φ) one can also include the
phase shift φ of the fast oscillations in Eq. (A2). This can
be done within the present framework by changing the origin
of time t → t + φ/ωB and redefining the periodic function:
f (ωt ) → f (ωt − φω/ωB).

2. Transformed representation

The bias magnetic field can be eliminated via a unitary
transformation which rotates the spin at the frequency ωB

around the z axis

Û = exp(−iωBt F̂z/h̄). (A4)

The transformed Hamiltonian

V̂transf (r, t ) = Û †V̂real(r, t )Û − ih̄Û †∂tÛ (A5)

no longer contains the bias term gF B0F̂z which is canceled by
the term −ih̄Û †∂tÛ , giving

V̂transf (r, t ) = gF
ˆ̃F · [B1(r) + B2(r) cos(ωBt )] f (ωt ). (A6)
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Here ˆ̃F = Û †F̂Û is the transformed spin operator. Its z com-
ponent ˆ̃Fz = F̂z is not affected by the transformation. On
the other hand, the x and y components of ˆ̃F rotate at the
frequency ωB:

ˆ̃Fx = F̂x cos(ωBt ) − F̂y sin(ωBt ), (A7)

ˆ̃Fy = F̂x sin(ωBt ) + F̂y cos(ωBt ). (A8)

3. Effective interaction operator and effective magnetic field

Since ωB � ω, one can apply the rotating wave ap-
proximation (RWA) replacing the fast oscillating term
ˆ̃F · B1(r) f (ωt ) by its temporal average F̂zB1z(r) f (ωt ) in
Eq. (A6). In a similar manner, the fast oscillating term
ˆ̃F · B2(r) cos(ωBt ) averages to 1

2 F̂xB2x(r) + 1
2 F̂yB2y(r) in

Eq. (A6). Therefore, by averaging V̂transf (r, t ) over a small
period TB = 2π/ωB, one arrives at an effective interaction
operator

〈V̂transf (r, t )〉 = gF F̂ · B(r) f (ωt ), (A9)

where

B(r) = 1
2 B2x(r)ex + 1

2 B2y(r)ey + B1z(r)ez (A10)

is a time-independent amplitude of the oscillating effective
magnetic field.

Although the original fields B1(r) and B2(r) entering
Eq. (A2) are divergence free, the effective field B(r) featured
in Eq. (A9) does not necessarily obey this requirement. For
example, by taking B1(r) = 0 and B2(r) ∝ xex − zez, one
arrives at an effective magnetic field pointing along the x axis
B(r) ∝ xex with ∇ · B(r) �= 0 [35].

4. Cylindrical and monopole fields

Suppose now that both B1(r) and B2(r) entering the origi-
nal magnetic field (A2) are the quadrupole fields:

B1(r) = − 1
2αz(xex + yey − 2zez ), (A11)

B2(r) = 2α⊥(xex + yey − 2zez ), (A12)

where αz and α⊥ characterize the strengths of the constituting
magnetic fields. In that case the effective magnetic field
(A2) generally contains all three Cartesian components and is
given by

B(r) = α⊥(xex + yey) + αzzez. (A13)

The field B(r) has a nonzero divergence ∇ · B(r) �= 0 as long
as αz �= −2α⊥. In particular, for αz = α⊥ = α one arrives at
the monopole-type [70] effective magnetic field for which
B(r) = αr.

APPENDIX B: CALCULATION OF 〈[Â(r, ωt )]2〉 TERM

Let us analyze the 〈[Â(r, ωt )]
2〉 term featured in Eq. (14)

for the scalar potential V̂total(r). For this let us rewrite Eq. (27)
in vector notations:

Â(r, ωt ) = aFd1 − sin (aF )d2 − [cos (aF ) − 1]d3 , (B1)

where d1, d2, and d3 are vectors with the Cartesian compo-
nents:

d1u = (B · F)(B · ∂B/∂u)

B3
, (B2)

d2u = [B × (B × F)] · ∂B/∂u

B3
, (B3)

d3u = (B × F) · ∂B/∂u

B2
. (B4)

Since F (ωt ) is an odd function of time F (ωt ) = −F (−ωt ),
the terms containing d1 · d3 and d2 · d3 average to zero in

〈[Â(r, ωt )]
2〉. Furthermore, for the spherically symmetric

monopole magnetic field with B = αr, one has

d1 = (r · F)r
r3

, d2 = r × (r × F)

r3
, d3 = (r × F)

r2
, (B5)

giving d1 · d2 = 0, as well as

d2
1 = (r · F)2

r4
, d2

2 = d2
3 = F 2r2 − (r · F)2

r4
. (B6)

Consequently one arrives at

〈[Â(r, ωt )]2〉 = a2〈F2〉d2
1 + 2d2

2 [1 − 〈cos (aF )〉]. (B7)

Equations (B6) and (B7) provide the following explicit result
for the monopole field:

〈[Â(r, ωt )]2〉 = 4

r2
0

〈F2〉 (r · F)2

r2

+ 2 − 2〈cos (2rF/r0)〉
r2

F 2r2 − (r · F)2

r2
.

(B8)

The relation of the form (B7) holds also for the spin-1/2
atom (F = h̄

2 σ) in a cylindrically symmetric magnetic field
(31) for which d2

2 = d2
3 and d1 · d2 + d2 · d1 = 0. In such a

situation

d2
1 = h̄2

4

(
α4

⊥ρ2 + α4
z z2

)
(
α2

z z2 + α2
⊥ρ2

)2 (B9)

and

d2
2 = h̄2α2

⊥
4

2α2
z z2 + (

α2
z + α2

⊥
)
ρ2(

α2
z z2 + α2

⊥ρ2
)2 . (B10)

This is consistent with the spherically symmetric result (B6)
for the spin-1/2 atom.
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[38] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.

Prog. Phys. 77, 126401 (2014).
[39] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S.

Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091
(2016).

[40] X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.-F. Xu, L. You, and
R. Wang, Sci. Rep. 6, 18983 (2016).

[41] B. Shteynas, J. Lee, F. C. Top, J.-R. Li, A. O. Jamison, G.
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