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Flow-equation approach to quantum systems driven by an amplitude-modulated time-periodic force
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We apply the method of flow equations to describe quantum systems subject to a time-periodic drive with
a time-dependent envelope. The driven Hamiltonian is expressed in terms of its constituent Fourier harmonics
with amplitudes that may vary as a function of time. The time evolution of the system is described in terms of
the phase-independent effective Hamiltonian and the complementary micromotion operator that are generated
by deriving and solving the flow equations. These equations implement the evolution with respect to an auxiliary
flow variable and facilitate a gradual transformation of the quasienergy matrix (the Kamiltonian) into a block-
diagonal form in the extended space. We construct a flow generator that prevents the appearance of additional
Fourier harmonics during the flow, thus enabling implementation of the flow in a computer algebra system.
Automated generation of otherwise cumbersome high-frequency expansions (for both the effective Hamiltonian
and the micromotion) to an arbitrary order thus becomes straightforward for driven Hamiltonians expressible in
terms of a finite algebra of Hermitian operators. We give several specific examples and discuss the possibility to
extend the treatment to cover rapid modulation of the envelope.
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I. INTRODUCTION

Periodically driven quantum systems [1,2] constitute an
immensely practical [3] and at the same time quite tractable
intermediate case between the two limits of stationary and
generic time-dependent systems. The former limit of sys-
tems governed by time-independent Hamiltonians looks much
simpler due to the availability of well-developed notions,
methods, intuition, and a relatively low numerical complex-
ity. Here the time evolution is readily available in terms of
the exponentiated Hamiltonian. In contrast, the evolution of
a generic time-dependent system is described by the time-
ordered exponential of a Hamiltonian operator that does not
commute with itself at different instants of time. The evolution
operator may be simple to write down, but its evaluation for a
nontrivial system requires considerable effort [4–6].

The theoretical description of periodically driven quantum
systems, the Floquet theory [1,2,7–9], is by now well estab-
lished and forms the basis of Floquet engineering [3,10–18]
that is related to numerous experimental highlights [3,15,19–
25] (see also Refs. [26–31]). The time evolution of a peri-
odically driven system can be separated into the long-term
dynamics governed by a time-independent effective Hamil-
tonian and micromotion that literally captures the periodic
micromotion in the course of a single period of the drive
[2,14,15,32–34]. We emphasize from the outset that two
distinct approaches to the formulation of the effective Hamil-
tonian are possible [3,14]. In our paper, as well as in many
other works [32–34], we will aim to derive a long-term
Hamiltonian that not only is stationary, but also does not
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depend on the phase of the drive. We reserve the term Floquet
effective Hamiltonian to refer to this particular case. In an
alternative approach, one uses a long-term Hamiltonian that
is more appropriately called the Floquet stroboscopic Hamil-
tonian (or just the Floquet Hamiltonian [3]). The Floquet
stroboscopic Hamiltonian [2,9,14,35,36] is straightforwardly
defined as the logarithm of the evolution operator over a single
period of the drive and is perfectly suited to describe the
evolution between two instants of time separated by an integer
multiple of the period. Note, however, that there exists a whole
family of such Hamiltonians, parametrized by the phase of the
drive or, equivalently, by the initial time.

Systematic construction of Floquet Hamiltonians has been
achieved through a number of approaches [33,34,37–39],
for example, various formulations of the perturbation theory,
transition to the extended space, and unitary flows towards
diagonalization (or block diagonalization) defined by a se-
quence of elemental transformations. In many cases, the
Floquet effective Hamiltonian is constructed order by order
as an expansion in powers of the inverse frequency of the
drive [14,33,34,38,40]. Importantly, such expansions support
a transparent physical interpretation of the generated terms,
which is a crucial asset in devising synthetic quantum systems
that mimic various phenomena of condensed-matter physics
[2,3,15,34]. For open systems, work on extension to Floquet
Lindbladians has begun [41–46].

An important extension is related to the inclusion of an
additional temporal modulation of the envelope of the driving
signal [40,47–49]. On the one hand, this situation is very
practical since it describes a whole class of experimentally
relevant setups involving transient signals [48,50]. On the
other hand, although technically the drive is not periodic, it
fits well into the described scheme of systematic construction
of effective Hamiltonians: The high-frequency (or alterna-
tive) expansions are typically formulated in terms of Fourier
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components of the driven Hamiltonian and it appears con-
ceptually straightforward to endow these components with
an additional argument of slow time, thus describing the
modulation of the envelope. Proceeding along this line of
thought, the authors of Ref. [40] obtained expressions of the
effective Hamiltonian and the micromotion to second order
in the inverse frequency. They were able to give a compelling
example characterized by a non-Abelian geometric phase [51]
that emerges precisely from the presence of the time derivative
of the Fourier component. In another development, a situ-
ation relevant to fast coherent manipulation of a qubit was
treated [48,49]. There the authors focused on the accurate
stroboscopic description and, employing the Magnus-Taylor
expansion, were able to proceed to high orders featuring com-
binations of the time derivatives of the Fourier components.

The purpose of the present paper is to explore the field
of amplitude-modulated periodically driven Hamiltonians re-
lying on the idea of unitary flows [39,52–57]. Originally
introduced to eliminate unwanted couplings in many-body
problems [52,58], these flows draw inspiration from the
renormalization semigroup [59,60] and feature a sequence
of elemental (infinitesimal in continuous flows or finite in
discrete flows) unitary transformations that make the Hamil-
tonian gradually morph from the original form to the desired
final form, in our case, the block-diagonal form in the ex-
tended space. We set out to systematically construct both the
effective Hamiltonian and the micromotion operator. As the
formulation of the flow is notably nonunique, we develop
and use a specific variant, called the Toda flow, that avoids
proliferation of constituent Fourier components. When the
Hamiltonian can furthermore be expressed in terms of a finite
number of Hermitian (Lie) generators, the flow equations
are perfectly suited for an automated treatment with the aid
of computer algebra systems. We have implemented such
a general-purpose procedure to derive the high-frequency
expansion to an arbitrary order and describe several paradig-
matic examples.

Our paper has the following structure. In Sec. II we intro-
duce the essential notions and tools used in the description
of periodically driven systems. In Sec. III we review the
idea of unitary flows towards diagonalization and generalize
this tool to the block diagonalization of the extended-space
quasienergy operator (also known as the Kamiltonian) in
Sec. IV. Proceeding to applications, in Sec. V we consider
the automated high-frequency expansion and describe several
examples in Sec. VII. Section VI is devoted to attempts to
go beyond the slow modulation of the envelope. A number of
technical issues, such as derivation of equations and proofs,
are relegated to the Appendixes.

II. FLOQUET HAMILTONIAN: STROBOSCOPIC VS
EFFECTIVE

A. Floquet stroboscopic Hamiltonian

Let us consider a quantum system described by a time-
periodic Hamilton operator h(ωt + 2π ) = h(ωt ) and obeying
the time-dependent Schrödinger equation

ih̄
d|ψ (t )〉

dt
= h(ωt )|ψ (t )〉. (1)

The time-evolution operator U (tfn, tin ), which defines the uni-
tary evolution of the state vector |ψ (tfn )〉 = U (tfn, tin )|ψ (tin )〉
from the initial time instant tin to the final time tfn, can be for-
mally written in terms of h(ωt ) as a time-ordered exponential

U (tfn, tin ) = T exp

[
− i

h̄

∫ tfn

tin

h(ωt )dt

]
. (2)

If the duration of the time interval is an exact multiple of
the period of the drive T = 2π/ω, that is, tfn − tin = NT ,
the periodicity of the Hamilton operator ensures that the full
evolution fulfills U (tfn, tin ) = [U (tin + T, tin )]N . It is thus nat-
ural to introduce the Floquet stroboscopic (FS) Hamiltonian
defined as the logarithm of the stroboscopic evolution operator

U (tin + T, tin ) = T exp

[
− i

h̄

∫ tin+T

tin

h(ωt )dt

]

= exp

[
− i

h̄
hFS(tin )T

]
. (3)

We note that the FS Hamiltonian hFS(tin + T ) = hFS(tin ), al-
beit stationary, periodically depends on the initial time or,
equivalently, on the phase of the drive in a parametric way.
Thus, when the initial phase is not fixed, one needs to deal
with all possible initial phases, that is, with a whole family
of FS Hamiltonians. Another downside of the FS Hamiltonian
is that it is unambiguously defined only for systems driven
in a purely periodic way. In specific cases it was extended
to incorporate a modulation of the envelope by introducing
a custom-made definition [47,48]. The general redefinition of
the FS Hamiltonian for modulated systems is not available.

Equation (3) gives a definition, but does not yet provide a
recipe for how the FS Hamiltonian can be found analytically.
For an arbitrary Hamiltonian h(ωt ), an exact analytical ex-
pression of hFS cannot be found; thus approximate methods
are applicable. One of the well-established methods relies on
the series expansion in powers of the inverse frequency of the
drive. If matrix elements hi j (t ) = 〈ψi|h(ωt )|ψ j〉 are smaller
than the characteristic energy of the periodic drive h̄ω, one can
apply the Magnus expansion [61,62] to the unitary evolution
featured in Eq. (3) to obtain the high-frequency expansion
hFS = hFS(0) + hFS(1) + hFS(2) + O(ω−3), with

hFS(0) = 1

2π

∫ θin+2π

θin

h(θ )dθ, (4a)

hFS(1) = 1

2(ih̄ω)

1

2π

∫ θin+2π

θin

∫ θ1

θin

[h(θ1), h(θ2)]dθ2dθ1, (4b)

hFS(2) = 1

6(ih̄ω)2

1

2π

∫ θin+2π

θin

∫ θ1

θin

∫ θ2

θin

{[h(θ1), [h(θ2), h(θ3)]]

+[h(θ3), [h(θ2), h(θ1)]]}dθ3dθ2dθ1, (4c)

where θin = ωtin is the initial phase. Further terms of the
Magnus expansion can be constructed recursively [62].

A different method to obtain the FS Hamiltonian employs
a continuous flow of unitary transformations that gradually
transform the time-periodic h(ωt ) into the stationary hFS [39].
This approach involves solving the flow equation, which typ-
ically cannot be done analytically as well. Instead, the flow
equation is used as a starting point for further approximations.
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In this paper we present a similar flow approach, formulated
not for the FS Hamiltonian but for a phase-independent Flo-
quet effective Hamiltonian that also includes the effects of a
time-dependent drive envelope.

B. Floquet effective Hamiltonian

To proceed, let us consider a quantum system described by
the Hamiltonian h(ωt, t ), which is a 2π -periodic function of
the first argument and also allows for an additional modulation
of the envelope through the dependence on time in the second
argument. Following Refs. [40,63], we will study the whole
family of solutions |ψθ (t )〉, where θ ∈ [0, 2π ) represents the
initial phase. The Hamiltonian h(ωt + θ, t ) thus also becomes
dependent on the initial phase. The evolution is governed by
the time-dependent Schrödinger equation

ih̄
d|ψθ (t )〉

dt
= h(ωt + θ, t )|ψθ (t )〉 (5)

and the initial condition at tin is assumed to be θ periodic, i.e.,
|ψθ+2π (tin )〉 = |ψθ (tin )〉. Thus, it remains periodic throughout
the evolution and can be expanded in a Fourier series as

|ψθ (t )〉 =
+∞∑

n=−∞
einθ |ψ (n)(t )〉. (6)

The corresponding expansion of the Hamiltonian reads

h(ωt + θ, t ) =
+∞∑

n=−∞
ein(ωt+θ )h(n)(t ), (7)

with [h(n)(t )]† = h(−n)(t ) imposed by Hermiticity. Note that
the Fourier components h(n)(t ) are time dependent as a con-
sequence of the second argument in the initial Hamiltonian,
h(ωt + θ, t ).

The state vector |ψθ (t )〉 parametrically depends on θ and
is assumed to belong to a physical Hilbert space H . Our next
step is to introduce an extended vector space and reformulate
Eq. (5) in a new formalism. The idea to introduce the extended
vector space for purely time-periodic quantum systems first
appeared in Ref. [8]. Because of the θ periodicity, it is natural
to introduce the space T of square-integrable functions pe-
riodic on the interval [0, 2π ). The exponents einθ with n ∈ Z
form the standard orthonormal basis |n〉 with a dot product
defined as 〈m|n〉 = (2π )−1

∫ π

−π
e−imθ einθ dθ = δmn. Now one

can build the extended space L = T ⊗ H as the tensor
product of the physical space and the space of θ -periodic
functions. The state vector in Eq. (6) can be interpreted as
a time-dependent vector (we will use double bra-ket notation
for the vectors in the extended space and calligraphic letters
for operators acting in the extended space)

|ψ (t )〉〉 =
+∞∑

n=−∞
|n〉 ⊗ |ψ (n)(t )〉 (8)

belonging to the space L where θ is no longer a parameter
but an intrinsic variable of the space. The Hamiltonian (7) can
also be interpreted as an operator acting in L :

H(ωt, t ) =
+∞∑

n,m=−∞
|n + m〉einωt 〈m| ⊗ h(n)(t ). (9)

However, the above procedure does not yet simplify the
analysis as the operator (9) still contains the time-periodic
argument ωt . To eliminate this dependence, one applies the
time-dependent unitary transformation

U = eωt (d/dθ ) =
+∞∑

n=−∞
|n〉einωt 〈n| ⊗ 1H (10)

to Eq. (5), which should be interpreted in the extended
space. From Eq. (10) one can see that the unitary transfor-
mation shifts the phase variable: U†θU = θ − ωt . Therefore,
the argument ωt + θ simplifies to just θ . The transformed
state vector |φ(t )〉〉 = U†|ψ (t )〉〉 obeys the time-dependent
Schrödinger equation

ih̄
d|φ(t )〉〉

dt
= K(t )|φ(t )〉〉, (11)

with

K(t ) = U†H(ωt, t )U − ih̄U† dU
dt

, (12)

which is often referred to as the Kamiltonian. In the differen-
tial form, the obtained Kamiltonian reads

K(t ) = −ih̄ω
d

dθ
⊗ 1H +

+∞∑
n=−∞

einθ ⊗ h(n)(t ), (13)

while in the bra-ket notation it reads

K(t ) =
+∞∑

n=−∞
|n〉nh̄ω〈n| ⊗ 1H

+
+∞∑

n,m=−∞
|m〉〈n| ⊗ h(m−n)(t ). (14)

From Eqs. (13) and (14) one can see that the Kamiltonian does
not contain the time-periodic argument ωt and depends on
time only through the second argument in the original Hamil-
tonian, h(ωt, t ). If the original Hamiltonian is purely periodic,
the Kamiltonian becomes time independent and one can rely
on methods developed for time-independent operators, e.g.,
various formulations of the perturbation theory. However, this
comes at the cost of working in the extended space L , while
the original problem was formulated in the simpler physical
space H .

The Kamiltonian K(t ) can be represented as an infinite
matrix where the matrix elements Kmn(t ) = 〈m|K(t )|n〉 are
operators in H . Such a matrix possesses some obvious
symmetries; for example, the first upper diagonal is filled
with copies of the same operator Kn,n+1 = h(−1)(t ). In or-
der to make this symmetry explicit, we introduce the shift
operator Pm = ∑

n |n + m〉〈n| and the number operator N =∑
n |n〉n〈n| (both acting in T ) and rewrite Eq. (14) in terms

of these operators

K(t ) = h̄ωN ⊗ 1H +
+∞∑

m=−∞
Pm ⊗ h(m)(t ). (15)

This expression constitutes a concise statement of the prob-
lem.

The next step is to block diagonalize the Kamiltonian.
More concretely, we assume that there exists a time-dependent
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unitary operator D(t ) such that the transformed state vec-
tor |χ (t )〉〉 = D†|φ(t )〉〉 obeys the time-dependent Schrödinger
equation

ih̄
d|χ (t )〉〉

dt
= KD(t )|χ (t )〉〉, (16)

with the block-diagonal Kamiltonian

KD(t ) = D†K(t )D − ih̄D† dD
dt

= h̄ωN ⊗ 1H + P0 ⊗ heff (t ). (17)

The operator heff (t ) is the Floquet effective (FE) Hamiltonian
[32–34] acting in the physical space H . Crucially, heff (t ) does
not depend on the initial phase. Indeed, we start from h(ωt +
θ, t ), which depends on the initial phase θ and arrive at the
θ -independent heff (t ).

The block-diagonalization procedure and symmetries al-
low us to restrict the analysis to the zeroth Floquet subspace
L0 spanned by the vectors |0〉 ⊗ |ψi〉, where |ψi〉 are the basis
vectors of the physical space H and i ∈ {1, 2, . . . , dim[H ]}.
Thus the subspace L0 is isomorphic to the physical space H .
The solutions for other Floquet subspaces Ln with n �= 0 can
be easily recovered from the solution in the subspace L0.
Indeed, let us assume that at the initial time the state vec-
tor in Eq. (16) reads |χ (tin )〉〉 = ∑+∞

n=−∞ |n〉 ⊗ |χn(tin )〉. Then
Eq. (16) decouples into copies of the Schrödinger equation
defined in the subspaces Ln as

ih̄
d|χn(t )〉

dt
= [nh̄ω + heff (t )]|χn(t )〉. (18)

By defining the evolution operator of Eq. (18) for n = 0 as a
time-ordered exponential

Ueff (tfn, tin ) = T exp

[
− i

h̄

∫ tfn

tin

heff (t )dt

]
, (19)

one can write the full evolution of Eq. (16) as

|χ (tfn )〉〉 = Ueff (tfn, tin )|χ (tin )〉〉

=
+∞∑

n=−∞
e−inω(tfn−tin )|n〉 ⊗ Ueff (tfn, tin )|χn(tin )〉. (20)

The Kamiltonians before the block diagonalization K(t )
and after the block diagonalization KD(t ) possess the same
symmetry, allowing them to be written in terms of the shift
operator Pm and the number operator N . This implies [40]
that the unitary operator D(t ) can be written as D(t ) =∑+∞

m=−∞ Pm ⊗ D(m)(t ), and because of unitarity, the operators
D(m)(t ) satisfy

+∞∑
m=−∞

[D(m)(t )]†D(m+l )(t ) = δ0l1H . (21)

Let us recall that starting from the state vector |ψθ (t )〉 in the
physical space H , we reformulated the task in the extended
space L for the state vector |ψ (t )〉〉, then performed the uni-
tary transformation (10) to obtain the state vector |φ(t )〉〉, and
subsequently applied the unitary transformation D(t ) to arrive
at the state vector |χ (t )〉〉, for which we are able to write the

solution (20). The full evolution in the extended space reads

|ψ (tfn )〉〉 = U (tfn )D(tfn )Ueff (tfn, tin )D†(tin )U†(tin )|ψ (tin )〉〉.
(22)

However, one needs to transform back to the physical space.
In order to write the solution in the physical space, for sim-
plicity, let us assume that at the initial time moment |ψθ (tin )〉
has only the zeroth Fourier component |ψθ (tin )〉 = |ψ (0)(tin )〉.
This means that, analyzing the θ -dependent family of solu-
tions, we have the same initial state vector |ψ (0)(tin )〉 for all θ .
Substituting such an initial state vector into Eq. (22) gives

|ψ (tfn )〉〉 =
+∞∑

m,n=−∞
|n − m〉 ⊗ [D(n)(tfn )einωtfn ]

× Ueff (tfn, tin )[D(m)(tin )eimωtin ]†|ψ (0)(tin )〉. (23)

Translating the ket |n − m〉 into the corresponding exponent
ei(n−m)θ , this expression can be interpreted as a vector in the
physical space which parametrically depends on θ ,

|ψθ (tfn )〉 = Umicro(ωtfn + θ, tfn )Ueff (tfn, tin )

× U †
micro(ωtin + θ, tin )|ψ (0)(tin )〉, (24)

where the unitary operator

Umicro(ωt + θ, t ) =
+∞∑

n=−∞
D(n)(t )ein(ωt+θ ) (25)

is called the micromotion operator. The unitarity of Eq. (25)
follows from Eq. (21). The motivation behind such a name
reflects the fact that it represents deviations from the effective
evolution governed by heff (t ). Importantly, the micromotion
depends on the initial phase θ and is applied only at the initial
and the final time moments, while the effective evolution
is θ independent but applies throughout the time interval.
Note that the unitary operator D(t ) and heff (t ) are not easy
to find. We will construct their explicit expressions in the
high-frequency regime, i.e., by analyzing the high-frequency
expansions of the flow equations.

C. A subtlety

Let us now discuss a special case of a time-dependent
perturbation that acts only within a certain time interval fully
contained between the initial and the final times tin and tfn,
respectively, within the observed evolution. In other words,
the Hamiltonian at the initial and the final time instants is
stationary h(ωtin + θ, tin ) = h(ωtfn + θ, tfn ) = h0; however, at
intermediate times, as the perturbation is gradually turned
on and subsequently off, the Hamiltonian is characterized
by a periodic time dependence with a time-dependent en-
velope. Since the operator D(t ) seeks to block diagonalize
the Kamiltonian (15) and by construction K(tin ) = K(tfn ) is
already block diagonal, one may be tempted to assume that
D(tin ) = D(tfn ) = 1L and thus the micromotion operator at
tin and tfn is equal to the unit operator. This however leads
to an obvious contradiction: If D(tin ) = D(tfn ) = 1L , then
according to Eq. (24) the final state does not depend on the
initial phase θ , while the shape of the perturbation in general
depends on θ . This contradiction can be resolved by analyzing
the equation for D(t ). Let us say that the FE Hamiltonian
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heff (t ) is known from a different source [not from Eq. (17)];
then from Eq. (17) one can write

ih̄
dD
dt

= KD − DKD. (26)

Having solved the differential Eq. (26) with the initial con-
dition D(tin ) = 1L , we will obtain a particular D(tfn ) �= 1L

which will not be of the block-diagonal form, featuring
nonzero D(n)(tfn ) for n �= 0, and moreover will be time depen-
dent, meaning that D(tfn − dt ) �= D(tfn ) for an infinitesimal
dt . However, D(tfn ) will still be able to block diagonalize
the Kamiltonian: After application of Eq. (17) to the block-
diagonal operator K(tfn ), the transformed operator KD(tfn )
will be also block diagonal. Because of such features of the
operator D(tfn ), the micromotion Umicro(ωtfn + θ, tfn ) will be-
come θ dependent, which resolves the contradiction. In fact,
this is an open question: When is it possible to find such heff (t )
that both D(tin ) and D(tfn ) will have a block-diagonal form
[note that if D(t ) has the block-diagonal form D(t ) = P0 ⊗
D(0)(t ), then Umicro(ωt + θ, t ) = D(0)(t ) does not depend on
θ ]? At least one satisfactory case is when the high-frequency
expansion is applicable [40]. From the high-frequency expan-
sion it is intuitively clear that the envelope of the perturbation
changes slowly over one period of periodic signal and thus the
final state (24) does not depend on the initial phase θ .

D. Summary so far

Let us summarize this rather lengthy section. We
distinguish two different approaches to describe a periodically
driven quantum system: one based on the Floquet
stroboscopic Hamiltonian and another based on the Floquet
effective Hamiltonian. The FS Hamiltonian can be defined for
purely periodic systems while the FE Hamiltonian is possible
to define even when the original Hamiltonian is modulated
by a time-dependent envelope. The FS Hamiltonian depends
on the initial phase of the periodic perturbation and describes
the evolution of the quantum system on a time interval
which is an integer multiple of the period. In contrast, the FE
Hamiltonian does not depend on the initial phase and gives the
evolution of the quantum system on an arbitrary time interval.
In principle, both Hamiltonians can be used to describe the
evolution over arbitrary time intervals: The effective evolution
should be sandwiched by the micromotion operators,
which in general depend on the initial phase, whereas
the stroboscopic description also comes with its own version
of phase-dependent micromotion [2]. The FE Hamiltonian is
most useful when the micromotion operator does not depend
on the initial phase, for example, in the high-frequency limit,
when the periodic perturbation with a slowly modulated
amplitude does not act at the beginning and at the end of the
time interval. Both Hamiltonians (FS and FE) are well defined
but difficult to find analytically for an arbitrary frequency;
thus one often resorts to a high-frequency expansion. For
the FS Hamiltonian the high-frequency expansion implies
that ω sets the dominant scale in the sense that any matrix
element hi j (ωt ) = 〈ψi|h(ωt )|ψ j〉, when expanded into the
Fourier series hi j (ωt ) = ∑

m h(m)
i j exp(imωt ), is characterized

by Fourier amplitudes |h(m)
i j | that are smaller than the

characteristic energy of the periodic drive h̄ω. For the FE

Hamiltonian the high-frequency expansion additionally
assumes that the time-dependent Fourier amplitudes |h(m)

i j (t )|
only slowly depend on time, d|h(m)

i j (t )|/dt � ω|h(m)
i j (t )|. In

such expansion formulas, the FE Hamiltonian reads simpler
than the FS Hamiltonian due to the independence on the
initial phase, and hereafter we will focus exclusively on the
FE Hamiltonian. In Secs. IV B and IV C we derive flow
equations that could in principle be used to find the FE
Hamiltonian for an arbitrary frequency. Yet the solution
of the flow equations is as difficult to obtain as it is to
find the unitary operator D(t ) that block diagonalizes the
Kamiltonian. Thus Appendixes B and C and Sec. V are
devoted to the solution of the flow equations in the form of
the high-frequency expansion. Finally, in Sec. VI we perform
the high-frequency expansion by relaxing the requirement
of the slow time dependence, i.e., the inequality
d|h(m)

i j (t )|/dt � ω|h(m)
i j (t )| is no longer imposed.

III. FLOW TOWARDS DIAGONALIZATION

Originally introduced in the context of many-particle prob-
lems [58], flow equations establish a method to gradually
bring a Hamiltonian closer to the diagonal form by applying
a sequence of specifically tailored unitary transformations. In
practice, a time-independent Hamiltonian H is represented as
a finite or infinite Hermitian matrix Hi j = H∗

ji and endowed
with an auxiliary dependence on the flow variable s. The
application of successive transformations is associated with
the forward motion along the s axis such that at the beginning
of the flow H (s = 0) matches the original Hamiltonian, while
at the end of the flow the matrix H (s → +∞) assumes the
diagonal form.

Two kinds of flows can be distinguished: In a discrete
flow, the flow variable follows a sequence of integer values
s = 0, 1, 2, . . ., and in a continuous (or differential) flow, the
value of s grows continuously. In the former case, the equation
for a single step reads

H (s + 1) = U (s)H (s)U †(s) = eη(s)H (s)e−η(s), (27)

where the anti-Hermitian operator η(s) = −η†(s) is known as
the flow generator. The generator must be constructed in such
a way that with each consecutive iteration the Hamiltonian
H (s + 1) becomes closer, according to some measure, to the
diagonal form than its predecessor H (s). Perhaps the simplest
way to diagonalize a finite Hermitian matrix in an iterative
manner is to use the Jacobi rotations [54,64]. The algorithm
is based on the idea that at each step s one may restrict
transformations to a two-dimensional vector space spanned
by two basis vectors |i〉 and | j〉 and perform a rotation in
this subspace so that the off-diagonal elements Hi j (s + 1)
and Hji(s + 1) vanish and their weight is absorbed into the
diagonal elements Hii(s + 1) and Hj j (s + 1). Even though
subsequent transformations will partially restore previously
eliminated matrix elements, all off-diagonal entries will even-
tually decay to zero.

In analogy to the discrete flow (27), application of a con-
tinuous flow also leads to a recursive relation between the
Hamiltonians H (s + ds) and H (s), but with an infinitesimal
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NOVIČENKO, ŽLABYS, AND ANISIMOVAS PHYSICAL REVIEW A 105, 012203 (2022)

(close to the identity) unitary transformation

H (s + ds) = eη(s)dsH (s)e−η(s)ds

= H (s) + [η(s), H (s)]ds + O((ds)2). (28)

From Eq. (28) we read off the differential equation represent-
ing the evolution of the Hamiltonian

dH (s)

ds
= [η(s), H (s)], (29)

where the initial condition H (0) is the original matrix to be
diagonalized. The flow generator η(s) is typically constructed
from the elements of H (s), but the recipe is not unique.

During the flow, the Hamiltonian undergoes only unitary
transformations; thus the trace of an integer power p of the
matrix H (s) is preserved for any s [54],

Ip = Tr[H p(s)], (30)

with Ip independent of the flow variable s. The case of p = 2
(corresponding to the squared Frobenius norm) gives

I2 =
∑

n

∑
m

Hnm(s)Hmn(s)

=
∑

n

H2
nn(s) +

∑
n

∑
m �=n

|Hnm(s)|2

= Idiag
2 (s) + Ioff

2 (s), (31)

and because dI2/ds = 0 the diagonal part and the off-diagonal
part evolve in opposite ways:

dIdiag
2

ds
= −dIoff

2

ds
. (32)

Full diagonalization means Ioff
2 = 0 and is assumed to be

achieved at s → +∞. Thus, the natural requirement for the
flow towards diagonalization is to have a non-negative deriva-
tive of the diagonal part

dIdiag
2

ds
� 0. (33)

It turns out that the requirement (33) can be easily ful-
filled. Let us write an explicit expression for the derivative
in Eq. (33) in terms of the matrix elements [54]

dIdiag
2

ds
=

∑
n

Hnn(s)
dHnn(s)

ds
+

∑
k

dHkk (s)

ds
Hkk (s)

=
∑

k

∑
n �=k

[Hnn(s) − Hkk (s)]

× [ηnk (s)Hkn(s) + η∗
nk (s)H∗

kn(s)]. (34)

Note that the contribution from n = k can be omitted because
for n = k the expressions in both sets of square brackets
are equal to zero: The first expression is obviously zero, while
the second one vanishes due to the anti-Hermitian nature of
the generator

ηnk (s) = −η∗
kn(s). (35)

One can chose the generator’s matrix elements of the form
[54]

ηnk (s) = Hnk (s) f (Hnn(s) − Hkk (s)), (36)

where f (x) is a real-valued function that must be odd,
− f (x) = f (−x), to ensure that the generator will be anti-
Hermitian [cf. Eq. (35)]. The purely imaginary diagonal
elements of the generator can, without loss of generality, be
set to zero, because from Eq. (29) one can see that they do
not appear in the evolution of the matrix elements of H (s).
Combining Eqs. (36) and (34), we see that the defining con-
dition (33) is satisfied if x f (x) � 0. Let us list three notable
choices: f (x) = x gives the canonical Wegner generator [58],
f (x) = 1/x was analyzed by White [65], and f (x) = sgn(x)
was used in Ref. [66]. We refer to Ref. [54] for the review
of pros and cons of each generator. Note that the requirement
(33) does not yet guarantee the full diagonalization, because at
some point the flow may stall, giving dIdiag

2 /ds = dIoff
2 /ds =

0 while Ioff
2 still remains nonzero. For example, all three

generators encounter problems in the case of degeneracy, i.e.,
when Hnn(s) = Hkk (s) while Hnk (s) �= 0.

The generator form in Eq. (36) has a certain disadvantage.
If the initial Hamiltonian was represented by a banded matrix
(tridiagonal, five diagonal, or similar), this sparse structure
would be a nice property to preserve during the course of
the flow. However, generators of Eq. (36) do not respect the
banded form, and in order to rectify the issue, Mielke [67]
proposed the following generator:

ηnk (s) = Hnk (s)sgn(n − k). (37)

Note that here the sign function acts not on the matrix el-
ements but on the row and column indices. If the initial
Hamiltonian is banded, Hnk (0) = 0 for |n − k| > n0, this
structure survives during the flow. The generator (37) is not
of the form of Eq. (36); thus the condition of nondecreasing
weight of the diagonal in Eq. (33) is not applicable. How-
ever, it was shown [67] that the flow always converges to a
final diagonal matrix, even if degeneracies are encountered.
Moreover, the diagonal elements are automatically sorted in
ascending order, Hnn(+∞) � Hkk (+∞) for n > k. For the
special case of real tridiagonal matrices, the generator (37)
was previously studied in a different context, namely, the
integrable Toda lattice [68]. The name stuck. Shortly, we will
define and use a generalized version of the Toda generator to
block diagonalize the Kamiltonian (15); therefore, it is natural
to call our version the block-diagonalizing Toda generator, or
briefly just the Toda generator.

IV. BLOCK DIAGONALIZATION OF THE KAMILTONIAN
USING A FLOW APPROACH

The Floquet effective Hamiltonian, defined in Sec. II,
can be found by block diagonalizing the Kamiltonian [see
Eq. (17)]. Thus, in the present section we will address the
problem of block diagonalization of time-dependent Kamil-
tonians, thus generalizing the flow-based approach of Sec. III
which was limited to diagonalization of static Hamiltonians.

There are several differences between diagonalization of
a static Hamiltonian and block diagonalization of the Kamil-
tonian. First, block diagonalization is in fact a much simpler
task than the full diagonalization, because a diagonal matrix
can be treated as a special case of a block diagonal one but not
the other way around. Our goal is to find the FE Hamiltonian
heff (t ), which is not necessarily diagonal with respect to the
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basis of the physical space H . This is in contrast to Ref. [69],
where the static Kamiltonian is fully diagonalized. Second,
the Kamiltonian has a special structure which allows us to
write it in terms of the shift operators (15). Thus, we will study
only flows that preserve this structure. Third, we consider
time-dependent Kamiltonians; therefore, the flow equations
(27) and (29) must be generalized to time-dependent matri-
ces. Finally, during the flow we need to keep track of all
infinitesimal unitary transformations because they define the
overall transformation D(t ) which is used to calculate the
micromotion operator (25).

The discrete flow equation (27) can be generalized for
time-dependent Kamiltonians as follows:

K(s + 1, t ) = eiS(s,t )K(s, t )e−iS(s,t ) − ih̄eiS(s,t ) ∂e−iS(s,t )

∂t
.

(38)

Here the extended-space operator iS plays the role of the flow
generator and S† = S . Correspondingly, the continuous flow
Eq. (29) generalizes to [53]

∂K(s, t )

∂s
= i[S (s, t ),K(s, t )] − h̄

∂S (s, t )

∂t
. (39)

We focus exclusively on generators of the form

iS (s, t ) = i
+∞∑

m=−∞
Pm ⊗ S(m)(s, t ), (40)

with

[S(m)(s, t )]† = S(−m)(s, t ), (41)

since this form guarantees that during the flow the Kamilto-
nian remains of the form set by Eq. (15).

In the case of a discrete flow, the net effect of all unitary
transformations can be written as

D†(t ) = eiS(s′,t )eiS(s′−1,t ) · · · eiS(2,t )eiS(1,t )eiS(0,t ), (42)

where s′ can be either a finite or an infinite number. For the
continuous flow, the joint action of all unitary transformations
is written as a flow-ordered integral

D†(t ) = Ts exp

[
i
∫ +∞

0
S (s, t )ds

]
. (43)

A. Generator for discrete flow in the high-frequency regime

Let us analyze a specific example of a discrete flow, con-
sidered within the framework of a high-frequency expansion.
To be more precise, we assume that (h̄ω)−1 is a small ex-
pansion variable and our goal is to make the Kamiltonian
block diagonal up to some order in (h̄ω)−1. At each step s,
the Kamiltonian can be written as

K(s, t ) = h̄ωN ⊗ 1H +
+∞∑

m=−∞
Pm ⊗ H (m)(s, t ), (44)

where each Fourier component H (m)(s, t ) is represented as
a power series H (m)(s, t ) = ∑+∞

i=0 H (m)
i (s, t ), with H (m)

i (s, t )
being of the order of (h̄ω)−i. At the start of the flow, s = 0 and
the zeroth-order terms H (m)

0 (0, t ) are set equal to the original

Fourier components, H (m)
0 (0, t ) = h(m)(t ), while all higher-

order terms are zero, H (m)
i�1 (0, t ) = 0. Moreover, we assume

that the time dependence of h(m)(t ) is slow in comparison to
ω; thus the derivatives behave as d jh(m)(t )/dt j ∼ O(1) for
arbitrary j.

Before we proceed, a comment on notation and termi-
nology is in order. We use the lowercase h to refer to the
Fourier harmonics of the driven Hamiltonian as well as of the
effective Hamiltonian. They are the input and the output of
the flow procedure, respectively. During the flow, we operate
with running (that is, s-dependent) Fourier harmonics denoted
by uppercase H . We note that Fourier components H (m) with
m �= 0 define off-diagonal blocks of the Kamiltonian and thus
we will refer to them as the off-diagonal Fourier components.
Likewise, H (0) appears only in the diagonal block and thus is
the diagonal Fourier component.

Let us assume that it is possible to find a generator that,
on each successive application, eliminates the leading term
from the expansion of all off-diagonal Fourier components.
To be more precise, in the initial (s = 0) Kamiltonian K(0, t )
the Fourier components H (m �=0)(0, t ) are represented as se-
ries that naturally start with H (m �=0)

0 (0, t ), while at s = 1 the
transformed Kamiltonian K(1, t ) contains Fourier compo-
nents of H (m �=0)(1, t ) whose expansion starts with the terms
H (m �=0)

1 (1, t ), because H (m �=0)
0 (1, t ) has been set to zero. After

two steps of the flow, both H (m �=0)
0 (2, t ) and H (m �=0)

1 (2, t ) are
eliminated, and so on. When such a flow reaches a certain
value s, one can write

K(s, t ) = h̄ωN ⊗ 1H

+ P0 ⊗
s−1∑
i=0

H (0)
i (s, t ) + O

(
1

(h̄ω)s

)
, (45)

with the obvious interpretation that the Kamiltonian K(s, t ) is
block diagonal up to the order s − 1. Thus the FE Hamiltonian
reads heff (t ) = ∑s−1

i=0 H (0)
i (s, t ) + O(1/(h̄ω)s). Surprisingly,

this scenario is realized with a very simple choice of the
generator

iS (s, t ) =
∑
m �=0

Pm

m
⊗ H (m)

s (s, t )

h̄ω
. (46)

For example, at s = 0 the initial generator reads

iS (0, t ) =
∑
m �=0

Pm

m
⊗ h(m)(t )

h̄ω
(47)

and after one step of the flow (38) the updated Kamiltonian
becomes

K(1, t ) = h̄ωN ⊗ 1H + P0 ⊗ h(0)(t ) + O

(
1

(h̄ω)1

)
, (48)

giving the FE Hamiltonian heff (t ) = h(0)(t ) + O(1/(h̄ω)1).
We have verified that the discrete flow with the generator of

the form of Eq. (46) reproduces the high-frequency expansion
procedure presented in Ref. [40]. In Appendix A we prove the
validity of the generator (46) and also show that the obtained
accuracy of Eq. (45) is in fact even better than anticipated.
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Let us draw attention to one drawback of the discussed
discrete flow driven by the generator (46). Let us say that
the initial Hamiltonian h(ωt, t ) has a limited number of
contributing Fourier harmonics. In other words, there exists
such a positive m0 that all higher harmonics vanish, i.e.,
h(m)(t ) = 0 for |m| > m0. One might expect that during the
flow we can restrict the analysis to the limited Fourier spec-
trum H (m)(s) with |m| � m0. Unfortunately, that is not true
and sooner or later H (m)(s) with |m| > m0 become nonzero.
This complicates the automated implementation of the flow
using symbolic computation packages. The same drawback is
present in the continuous flow discussed in Sec. IV B. There-
fore, in Sec. IV C we will proceed to the introduction of the
Toda generator, which is not plagued with this problem.

B. Generator proposed by Verdeny, Mielke, and Mintert [37]

Let us now turn to continuous flows to implement the
block diagonalization of the Kamiltonian. One can adapt the
generator (36) to work with block matrices. By interpreting
the partial inner product 〈n|iS|k〉 as an element of a block
matrix, one can rewrite Eq. (36) in terms of block matrices

〈n|iS (s, t )|k〉 = 〈n|K(s, t )|k〉 f (〈n|K(s, t )|n〉 − 〈k|K(s, t )|k〉).

(49)

Because 〈n|K(s, t )|n〉 = nh̄ω1H + H (0)(s, t ), the difference
between two diagonal blocks is always proportional to the
unit operator. Previously, the function f (·) was defined for
real numbers. Here we must slightly generalize the function’s
action to operators defined in the vector space H and propor-
tional to the unit operator as f (x1H ) = 1H f (x). Thus, with
the Wegner case of the function f (·), the generator reads

iS (s, t ) = h̄ω
∑
m �=0

mPm ⊗ H (m)(s, t ). (50)

This generator was proposed in Ref. [37]. Note that because
the generator (50) is of the form specified by Eqs. (40) and
(41), the Kamiltonian remains of the form set by Eq. (15)
during the flow. By substituting Eq. (50) into Eq. (39) we
obtain the flow equations for the Fourier components

dH (0)(s, t )

ds
= 2

h̄ω

+∞∑
m=1

m[H (m)(s, t ), H (−m)(s, t )], (51a)

and for n �= 0,

dH (n)(s, t )

ds
= −n2H (n)(s, t ) + i

ω
nḢ (n)(s, t )

+ 1

h̄ω

∑
m �=n

(m − n)[H (m)(s, t ), H (n−m)(s, t )].

(51b)

Note that here we rescaled the flow variable s → s/(h̄ω)2

for the sake of convenience. The initial conditions for Eq. (51)
are H (m)(0, t ) = h(m)(t ) and the FE Hamiltonian is obtained
as the limit lims→+∞ H (0)(s, t ) = heff (t ). Equation (51) can
be used as a starting point for approximations. For exam-
ple, in Appendixes B and C we show how one can obtain
the FE Hamiltonian and the micromotion operator in terms
of high-frequency expansions when the modulation of the

envelope is slow on the scale set by the driving frequency,
i.e., d jh(m)(t )/dt j ∼ O(1). In principle, such results are a
reproduction of the equations obtained in Ref. [40]. A dif-
ferent variant of a high-frequency expansion is obtained in
Sec. VI, where we assume a rapid variation of the envelope,
i.e., dh(m)(t )/dt ∼ O(h̄ω). As we will see in Sec. VI, such
an assumption places some restrictions on the behavior of
the Fourier components as a function of time. The expansion
presented in Sec. VI can potentially be useful in situations
where the envelope of the perturbation is so fast that only a
few oscillations are performed during the perturbation pulse.

C. Block-diagonalizing the Toda generator

As discussed previously, the continuous flow defined by
Eq. (51) and the discrete flow presented in Sec. IV A lead to
the proliferation of Fourier harmonics H (m)(s, t ). In order to
overcome this obstacle, we will employ a generator akin to the
Toda generator in Eq. (37). In fact, we use the same Eq. (49),
but this time with the function f (x) = sgn(x); thus

iS (s, t ) =
∑
m �=0

sgn(m)

h̄ω
Pm ⊗ H (m)(s, t ). (52)

Here we rescale the flow variable s → s/(h̄ω)2 as before.
The flow equations produced by the Toda generator (52) are
similar to Eq. (51),

dH (0)(s, t )

ds
= 2

h̄ω

+∞∑
m=1

[H (m)(s, t ), H (−m)(s, t )], (53a)

and for n �= 0

dH (n)(s, t )

ds
= −n sgn(n)H (n)(s, t ) + i

ω
sgn(n)Ḣ (n)(s, t )

+ 1

h̄ω

∑
m �=n

sgn(m − n)

× [H (m)(s, t ), H (n−m)(s, t )]. (53b)

In Appendix E we show that if the initial condition
H (n)(0, t ) = 0 for |n| > n0, then H (n)(s, t ) = 0 for all s ∈
[0,+∞). This feature facilitates an automated generation of a
high-frequency expansion from the flow Eqs. (53).

V. AUTOMATED EXPANSION FOR A FINITE
CLOSED ALGEBRA

Appendixes B and C describe the procedure that allows
us to derive the FE Hamiltonian and the micromotion op-
erator starting from Eqs. (53) in the high-frequency regime,
including the possibility of a slow modulation of the driving
amplitude. However, manual implementation of this proce-
dure for expansions of higher order is too tedious. Mikami
et al. [38] were able to write out such an expansion up to
the fourth order for the simpler case of unmodulated pe-
riodic driving. The authors of Refs. [48,49] were able to
proceed to even higher orders within the framework of the
Magnus-Taylor expansion and specializing to a two-level sys-
tem. Here we demonstrate that an automated expansion to an
arbitrary order (limited only by the available computational
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resources) can be achieved with the help of a symbolic com-
putational package. However, for this scheme to succeed, we
need to place several restrictions on the initial Hamiltonian
h(ωt + θ, t ). Namely, we assume that the Hamiltonian has
a limited number of Fourier harmonics, that is, h(n)(t ) = 0
for |n| > n0, and the Hamiltonian is written in terms of a
finite L-dimensional Lie algebra spanned by the Hermitian
generators Gl with l = 1, 2, . . . , L. Thus

h(n)(t ) =
L∑

l=1

c(n)
l (t )Gl (54)

and the functions c(n)
l (t ) are complex-valued functions of time.

In the absence of the additional modulation of the driving
signals they reduce to mere complex numbers. The algebra
is closed with respect to the commutator

[Gl , Gm] =
L∑

n=1

γlmnGn, (55)

where γlmn are the structure constants defined by the algebra.
Note that in general the algebra can be closed in an approx-
imate sense: Certain terms produced by the commutator (54)
are ignored as not belonging to the model considered. The
simplest nontrivial example is provided by a two-level system
or a spin- 1

2 particle in a magnetic field. Here one operates
within the algebra with L = 3 generators σ{x,y,z} represented
by the Pauli matrices and the structure constant γlmn = 2iεlmn

proportional to the Levi-Cività antisymmetric tensor. Thus
the commutators in Eq. (53) can be expressed in terms of
products of coefficients c(n)

l (t ). By expanding the coefficients
in power series of the inverse frequency c(n)

l (t ) = c(n)
l,0 (t ) +

c(n)
l,1 (t ) + · · · , a symbolic computation package can collect

terms of the same order on both sides of the flow equations
and solve the ensuing differential equations order by order for
c(n)

l, j (s, t ). Note that the differential equations produced during
this procedure are nothing more than linear inhomogeneous
first-order differential equations [see, for example, Eq. (B9)],
thus easily solvable with a symbolic computation package.
The micromotion operator is obtained in a similar way; in
this case one computes the integrals generated by the Magnus

expansion. Each consecutive term in the expansion is obtained
from the exact recursive relations given in Ref. [62].

To give a concrete example of an automated construction
of a high-frequency expansion, we consider the case of the
su(2) algebra, specifically, the Rabi model subject to a linearly
polarized drive (alternative expansions for the same model
were analyzed in Refs. [48,49])

hlab(ωt, t ) = h̄�

2
σz + 2g(t ) cos(ωt + φ)σx. (56)

Here we assume that � is comparable to ω, more precisely, we
assume a small detuning h̄� − h̄ω = � ∼ O(1). Therefore,
the original Hamiltonian (56) is not suitable to proceed with
the inverse frequency expansion, and we first transition into
a moving frame with the help of the unitary transformation
Ũ (t ) = exp[−iωtσz/2]. The transformed Hamiltonian reads

h(ωt, t ) = Ũ †(t )hlab(ωt, t )Ũ (t ) − ih̄Ũ †(t )
dŨ (t )

dt

= �

2
σz + g(t )[cos(φ) + cos(2ωt + φ)]σx

+ g(t )[sin(φ) − sin(2ωt + φ)]σy (57)

and the contributing nonzero Fourier components are

h(0) = �

2
σz + g(t ) cos(φ)σx + g(t ) sin(φ)σy, (58a)

h(2) = g(t )

2
eiφσx + g(t )

2
ieiφσy = [h(−2)]†. (58b)

Explicit expansion formulas for the FE Hamiltonian are
quite bulky; therefore, in Appendix F we present a trun-
cated expansion up to the fourth order with φ = 0. Here we
limit ourselves to the second-order expansions. The effective
Hamiltonian reads

heff = σx

[
g(t ) cos φ − g3(t ) cos φ

4(h̄ω)2

]

+ σy

[
g(t ) sin φ − g3(t ) sin φ

4(h̄ω)2

]

+ σz

[
�

2
+ g2(t )

2h̄ω
− �g2(t )

4(h̄ω)2

]
(59a)

and the micromotion is given by Umicro(t ) = e−iS(t ), with

S(t ) = σx

[
g(t ) sin(2ωt + φ)

2h̄ω
− �g(t ) sin(2ωt + φ)

4(h̄ω)2
+ h̄g′(t ) cos(2ωt + φ)

4(h̄ω)2

]

+ σy

[
g(t ) cos(2ωt + φ)

2h̄ω
− �g(t ) cos(2ωt + φ)

4(h̄ω)2
− h̄g′(t ) sin(2ωt + φ)

4(h̄ω)2

]
+ σz

g2(t ) sin(2ωt + 2φ)

2(h̄ω)2
. (59b)

In contrast to Refs. [48,49], in our expansions the first-
and second-order FE Hamiltonians do not depend on the time
derivative g′(t ). The reason for this is that the expansion is per-
formed for different Hamiltonians: the FE Hamiltonian in our
case and the FS Hamiltonian in the example of Refs. [48,49].

Figure 1 shows the results of a numerical simulation based
on the obtained high-frequency expansion given in Eq. (59).

We focus on a two-level system described by the Hamiltonian
(57) with the parameters g(t ) = const, �/h̄ω = 0.3, g/h̄ω =
0.2, and φ = 0 and initially prepared in the ground state.
Using a number of different approximations, we compute the
probability P1→2 of transition to the excited state as a function
of the scaled time ωt . In Fig. 1(a) we cover the time interval
ωt ∈ [0, 60] that roughly corresponds to five Rabi cycles, and
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FIG. 1. Probability of transition to the excited state in a driven
two-level system, calculated using various approximations. The nu-
merically exact evolution (solid line) is reliably reproduced only
when the micromotion is included (dotted line). Approximations that
do not take micromotion into account (dashed lines) consistently fail
to reproduce full details of the evolution

Fig. 1(b) shows a magnification of the last cycle marked by
the shaded area in Fig. 1(a). The black solid line shows the
exact evolution, obtained from numerical time propagation of
the time-dependent Schrödinger equation using a fourth-order
Runge-Kutta scheme. The black dotted line corresponds to the
approximate evolution calculated using the complete informa-
tion available from Eq. (59), i.e., including both the effective
Hamiltonian (59a) and the micromotion (59b). To elucidate
the role of particular terms, we include three dashed lines cor-
responding to approximations that neglect the micromotion
and truncate the effective Hamiltonian. The different levels of
approximation are encoded using the color and thickness of
the dashed lines. The thinnest red line depicts the evolution
generated by including only the zeroth-order terms in the
effective Hamiltonian and the green line of intermediate thick-
ness corresponds to the case when the zeroth- and first-order
terms are included. Finally, the thickest blue dashed line cor-
responds to the second-order approximation for the effective
Hamiltonian (59a), however still not taking the micromotion
into account. We see that improved accuracy of the effective
Hamiltonian translates to a more reliable calculation of the pe-
riod of the Rabi cycle; however, inclusion of the micromotion
is indeed essential for the reliable description of the complete
quantum evolution.

VI. CASE OF FAST AMPLITUDE MODULATION

Let us now return to the flow Eqs. (51) and perform
the inverse-frequency expansion analogous to that presented
in Appendixes B and C, however focusing on the case of
fast amplitude modulation. We now assume that the rate of
change of the Fourier components of the driven Hamiltonian
is comparable to the driving frequency, formally expressed as
d jh(m)(t )/dt j ∼ O(ω j ). Although it may seem that in such a
regime the frequency can no longer be considered high, we
stress that the amplitudes of the Fourier components are still
assumed to be low, h(m)(t ) ∼ O(1).

Repeating the steps in Appendix B, we expand each
Fourier component into an inverse-frequency power series
H (n)(s, t ) = H (n)

0 (s, t ) + H (n)
1 (s, t ) + · · · , insert the expan-

sions into the flow Eqs. (51), and collect terms of the same
order on both sides. In the zeroth order we get a trivial equa-
tion for the zeroth Fourier component,

dH (0)
0

ds
= 0, (60a)

and a modified equation for the n �= 0 Fourier components,

dH (n)
0 (s, t )

ds
= −n2H (n)

0 (s, t ) + i

ω
nḢ (n)

0 (s, t ). (60b)

From the trivial Eq. (60a) we find the zeroth-order
FE Hamiltonian heff (0)(t ) = h(0)(t ), while the first-order FE
Hamiltonian heff (1)(t ) can be obtained by solving Eq. (60b). In
principle, Eq. (60b) is a partial differential equation, because
derivatives with respect to s and t act on the same quantity.
Such an equation can be solved using an additional Fourier
expansion with respect to t . We are interested in the time
interval t ∈ [tin, tfn] and assume that the driven Hamiltonian
is the same on the boundaries of the interval, h(n)(tin ) =
h(n)(tfn ). Thus the Fourier expansion with respect to t
reads

H (n)
0 (s, t ) =

+∞∑
j=−∞

H (n, j)
0 (s) exp[i j�t], (61)

where � = 2π/(tfn − tin ) is the characteristic frequency of the
envelope. In view of [H (n)

0 ]† = H (−n)
0 we have

[
H (n, j)

0 (s)
]† = H (−n,− j)

0 (s). (62)

Each Fourier component of the original Hamiltonian can be
expanded into a Fourier series h(n)(t ) = ∑

j h(n, j) exp[i j�t];

thus at the beginning of the flow we have H (n, j)
0 (0) = h(n, j).

Substituting the ansatz (61) into the flow Eq. (60b), one can
see that different Fourier components (for different j) do not
couple

dH (n, j)
0 (s)

ds
= −n2H (n, j)

0 (s) − �

ω
jnH (n, j)

0 (s) (63)

and are described by the exponential solutions

H (n, j)
0 (s) = h(n, j) exp

[
−

(
n2 + �

ω
jn

)
s

]
. (64)
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The high-frequency expansion converges only if H (n, j)
0 (s →

+∞) = 0. Therefore, one should place a restriction on the
index j. We assume that the expansion of the envelope (61)
does not have high harmonics

H (n)
0 (s, t ) =

J∑
j=−J

H (n, j)
0 (s) exp[i j�t], (65)

and the positive integer J satisfies

J <
ω

�
. (66)

This means that if, over the interval [tin, tfn], the high-
frequency modulation oscillates J + ε times [here ε ∈ (0, 1)],
then the expansion of the envelope cannot have harmonic
number higher than J . For example, if the high-frequency
modulation oscillates 3.5 times, then the shape of the envelope
expanding into the Fourier series cannot possess the fourth
harmonic.

Next, using the expansion (65), one can write the first-order
flow equation for the zeroth Fourier component

dH (0)
1 (s, t )

ds
= 2

h̄ω

+∞∑
m=1

J∑
j=−J

J∑
j′=−J

m[h(m, j), h(−m, j′ )]ei( j+ j′ )�t e−[2m2+m(�/ω)( j− j′ )]s. (67)

Integrating this equation and taking into account the initial condition H (0)
1 (0, t ) = 0, we obtain the solution. Calculation of the

limit s → +∞ yields the first-order FE Hamiltonian

heff (1)(t ) = 1

h̄ω

+∞∑
m=1

J∑
j=−J

J∑
j′=−J

[h(m, j), h(−m, j′ )]

m + �
2ω

( j − j′)
ei( j+ j′ )�t . (68)

We obtained the FE Hamiltonian up to the first order. Let us now calculate the corresponding first-order expansion of the
micromotion operator. The procedure is similar to that presented in Appendix C, because we use the same generator form (C2)
as in Appendix C. The equations up to Eq. (C4) are identical; thus S0 = 0. Yet the first-order correction, taking into account the
solution (64), reads

S1(t ) = 1

ih̄ω

∑
m �=0

Pm ⊗
J∑

j=−J

h(m, j)ei j�t

m + �
ω

j
. (69)

The micromotion operator in the physical space H reads

U †
micro(ωt + θ, t ) = exp

[
1

h̄ω

∑
m �=0

{
eim(ωt+θ )

m

J∑
j=−J

h(m, j)ei j�t

1 + �
ω

j
m

}
+ O

(
1

(h̄ω)2

)]
. (70)

Because of Eq. (66) we have |� j/ωm| < 1, and using the geometric progression series 1/(1 + x) = 1 − x + x2 − · · · we can
rewrite Eq. (70) in terms of the full Fourier harmonics h(m)(t ) and its derivatives as

U †
micro(ωt + θ, t ) = exp

[
1

h̄ω

∑
m �=0

{
eim(ωt+θ )

m

+∞∑
l=0

(
i

ωm

d

dt

)l

h(m)(t )

}
+ O

(
1

(h̄ω)2

)]
. (71)

From this expression one can see that if at the time moments t = {tin, tfn} the amplitude of the envelope equals zero, h(m �=0)(t ) = 0,
then the micromotion operator still does not equal unity, because of the derivatives of the Fourier components dlh(m �=0)(t )/dt l �=
0 of various orders. This result differs from the expansion presented in Appendix C, where the first-order micromotion operator
(C4) does not contain derivatives, the second-order micromotion operator (C7) has only first derivative, and so on.

Similarly to Eq. (71), one can rewrite the first-order FE Hamiltonian (68) in the terms of the full Fourier component h(m)(t )
instead of the double-indexed Fourier components h(m, j). To do that we again use the geometric series for the fraction

1

m + �
2ω

( j − j′)
= 1

m

[
1 + i2�( j − j′)

2ωm
+

(
i2�( j − j′)

2ωm

)2

+ · · ·
]
. (72)

Then, in the terms of h(m)(t ) and its derivatives, the first-order FE Hamiltonian reads

heff (1)(t ) = 1

h̄ω

∑
m �=0

1

2m

+∞∑
l=0

(
i

2ωm

)l l∑
r=0

l!(−1)r

r!(l − r)!

[
d (l−r)h(m)(t )

dt (l−r)
,

drh(−m)(t )

dtr

]
. (73)
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This expression is consistent with Eq. (B13). To be more precise, we can reproduce the term proportional to [ḣ(m), h(−m)]. Let us
take only l = 0 and l = 1 in Eq. (73). Then it reads

heff (1)(t ) ≈
+∞∑
m=1

[h(m)(t ), h(−m)(t )]

mh̄ω
+ 1

(2h̄ω)2

∑
m �=0

ih̄

m2
{[ḣ(m)(t ), h(−m)(t )] − [h(m)(t ), ḣ(−m)(t )]}

=
+∞∑
m=1

[h(m)(t ), h(−m)(t )]

mh̄ω
+

∑
m �=0

ih̄[ḣ(m)(t ), h(−m)(t )]

2(h̄ω)2m2
. (74)

If we assume that the additional time dependence is slow, such
that ḣ(m) ∼ O(1), the second term of Eq. (74) becomes second
order and it is exactly equal to the term responsible for the
non-Abelian geometric phase [40] in quantum systems where
[ḣ(m), h(−m)] �= 0. Note that Eq. (73) contains not only first-
order but also higher-order derivatives; thus it can be used to
engineer unusual effects.

VII. EXAMPLES

In this section we describe several examples of high-
frequency expansion for specific operator algebras.

A. Spin- 1
2 particle in an oscillating and slowly

rotating magnetic field

We begin by revisiting the model discussed in Refs. [40,70]
as the simplest example of a driven system where nontrivial
behavior emerges from the modulation of the drive. The scaled
driven Hamiltonian reads

h(ωt, t ) = [Bx(t )σx + By(t )σy] cos ωt (75)

and describes a spin- 1
2 particle in a rapidly oscillating mag-

netic field (the frequency ω sets the dominant scale) whose
amplitude is also slowly changing as a function of time.
Here the Hamiltonian and the magnetic field are measured in
the units of the frequency. The envelope is parametrized by
the two projections Bx(t ) and By(t ). Its magnitude [B2

x (t ) +
B2

y (t )]1/2 is of little interest to our purposes, but the direction
must be changing as a function of time. Thus, Bx(t ) and By(t )
must be distinct functions, i.e., we will take that they are not
equal or proportional. Automated generation of the effective
Hamiltonian up to the fourth order in the inverse frequency
gives

heff (0) = heff (1) = heff (3) = 0, (76a)

heff (2)(t ) = σz2[Bx(t )B′
y(t ) − By(t )B′

x(t )]ω−2, (76b)

heff (4)(t ) = σz

{
1

2
B′′′

x By − 1

2
BxB′′′

y

+B′
x

[
2B2

xBy + 3B′′
y

2
+ 2B3

y

]

−B′
y

[
2BxB2

y + 3B′′
x

2
+ 2B3

x

]}
ω−4. (76c)

In Eq. (76c) we skipped the time argument for brevity. As
the zeroth and the first terms vanish, the leading term is given

by Eq. (76b). This term can be expressed as

H = 2ω−2(B × Ḃ) · σ, (77)

with B = exBx(t ) + eyBy(t ), and reproduces the result of
Ref. [40]. The availability of automated expansion allows us
obtain also the subleading term behaving as ω−4 and featuring
higher-order derivatives and their combinations. We note that
all terms in Eq. (76) are proportional to derivatives and vanish
identically in the absence of temporal modulation.

B. Minimal many-body system

In this example, we discuss a minimal many-body sys-
tem of two interacting bosonic particles populating a dimer
consisting of two lattice sites. We introduce the creation
(annihilation) operators c†

j (c j), with the subscript j ∈ {1, 2}
corresponding to the site number, and write the driven
Hamiltonian as

h(ωt, t ) = J (ωt, t )τ1 + �(ωt, t )

2
τ3 + U

2
τ4, (78)

with the operators

τ1 = ĉ†
1ĉ2 + ĉ†

2ĉ1, (79a)

τ3 = ĉ†
2ĉ2 − ĉ†

1ĉ1, (79b)

τ4 = ĉ†
1ĉ†

1ĉ1ĉ1 + ĉ†
2ĉ†

2ĉ2ĉ2. (79c)

The three parts of the Hamiltonian (78) describe the hopping
transitions with a time-dependent transition strength J , the dif-
ference of on-site energies �, and bosonic on-site interaction
of strength U , respectively. We list also the remaining opera-
tors that will be needed to describe the effective dynamics:

τ2 = i(ĉ†
1ĉ2 − ĉ†

2ĉ1), (79d)

τ5 = i(n2ĉ†
1ĉ2 + n1ĉ†

2ĉ1) + H.c., (79e)

τ6 = n2ĉ†
1ĉ2 − n1ĉ†

2ĉ1 + H.c., (79f)

τ7 = n1n2, (79g)

τ8 = ĉ†
1ĉ†

1ĉ2ĉ2 + ĉ†
2ĉ†

2ĉ1ĉ1, (79h)

τ9 = i(ĉ†
2ĉ†

2ĉ1ĉ1 − ĉ†
1ĉ†

1ĉ2ĉ2). (79i)

Here n j = ĉ†
j ĉ j .

The collection of operators τn is closely related, albeit not
in one-to-one correspondence, to the su(3) algebra spanned
by the Gell-Mann matrices. To see this, we define the basis of
three two-particle states

|1〉 = 1√
2

ĉ†
1ĉ†

1|∅〉, (80a)
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|2〉 = ĉ†
1ĉ†

2|∅〉, (80b)

|3〉 = 1√
2

ĉ†
2ĉ†

2|∅〉, (80c)

where |∅〉 denotes the vacuum state. In this basis, the operators
τn are encoded as matrices that are simple combinations of
the Gell-Mann matrices λm and the 3 × 3 unit matrix. For
example, τ1 and τ6 are represented as

τ1|6 =
⎛
⎝ 0 ±√

2 0
±√

2 0
√

2
0

√
2 0

⎞
⎠ = λ6 ± λ1√

2
, (81)

with the upper (lower) sign for τ1 (τ6). Note that the physical
content of the model requires that the unit matrix is also
included: Interactions are described in terms of matrices τ4

(on-site interaction) and τ7 (neighbor interactions) that have
nonzero traces. The introduced matrix representations allow
for an easy calculation of the commutator algebra and its
implementation in a symbolic computation system.

To give an example, we assume that the shaking protocol
is such that

J (ωt, t ) = j0 + 2 j1(t ) cos ωt, (82a)

�(ωt, t ) = δ0 = const, (82b)

that is, the on-site energy splitting is a constant set to δ0,
whereas the hopping matrix element is harmonically modu-
lated in time around some average value j0. The factor 2 is
included in Eq. (82a) to account for the fact that 2 cos ωt =
eiωt + e−iωt so that j1(t ) has the meaning of the modulated
first Fourier component.

We obtain the effective Hamiltonian in the form of a high-
frequency expansion

heff =
9∑

l=1

τl (cl,0 + cl,2 + cl,4 + · · · ), (83)

with cl,i ∼ O(ω−i ). Note that first- and third-order terms van-
ish. In the zeroth order, quite obviously, only time averages
are present

c1,0 = j0, c3,0 = δ0, c4,0 = U

2
, (84)

and the remaining coefficients cl,0 = 0 with l ∈ {2, 5, 6,

7, 8, 9}.
In the second order, we find four nonzero contributions

c3,2 = −4δ0 j2
1 (t )

(h̄ω)2
, (85a)

c4,2 = −2U j2
1 (t )

(h̄ω)2
, (85b)

c7,2 = 8U j2
1 (t )

(h̄ω)2
, (85c)

c8,2 = −2U j2
1 (t )

(h̄ω)2
. (85d)

Interestingly, Eq. (85b) shows that shaking has led to a
renormalization of the on-site interaction strength from U to

U − �U , with �U = 4U j2
1 (t )/(h̄ω)2. This is easy to inter-

pret in terms of a process where a particle is able to jump twice
during the period of the drive: Two particles that share a site in
fact spend some fraction of the period sitting on separate sites
and thus not interacting. Likewise, as a consequence of the
same process, Eq. (85c) shows that shaking has led to the engi-
neering of hitherto absent nearest-neighbor interactions: Two
particles sitting on neighboring sites experience an interaction
energy of magnitude V = 2�U . The factor 2 comes from
the fact that in the considered dimer two sites share a single
link. The appearance of modified interactions with a similar
sum rule can be generalized to large lattices as discussed in
Refs. [34,71]. A similar expression in Eq. (85d) shows that
the described process is also responsible for the appearance
of pair tunnelings expressed by the operator τ8. Finally, from
Eq. (85a) we also learn that the difference of on-site energies
is also weakened. This effect is not related to interactions;
thus the modification is proportional to δ0 rather than U (as
seen in previous cases). However, the proportionality to j2

1 (t )
is still present, revealing that a sequence of two hopping
transitions during the period of the drive is involved. The
remaining second-order contributions are zero; thus cl,2 = 0
for l ∈ {1, 2, 5, 6, 9}.

In the fourth order of the high-frequency expansion we
find further modifications to the terms already affected in the
second order: The coefficients c3,4, c4,4, c7,4, and c8,4 are all
nonzero. However, these effects are not the leading ones; they
are dwarfed by the presence of already discussed processes
and therefore are not so interesting. Let us just mention that
they feature combinations of the time derivatives such as
j′′1 (t ) and [ j′1(t )]2 as a key prediction of the presented high-
frequency expansion for systems with the time-modulated
drive.

In addition, we find two more fourth-order contributions to
the effective Hamiltonian

c1,4 = −12 j0 j2
1 (t )

(
δ2

0 + U 2
)

(h̄ω)4
, (86a)

c6,4 = −10 j0 j2
1 (t )δ0U

(h̄ω)4
. (86b)

The former signals the reduction of the hopping matrix
element, while the latter is an indication of density-assisted
tunneling events captured by τ6. These processes are however
best explored on large lattices, that is beyond, the overly
restrictive dimer model.

The consideration of an alternative [to Eq. (82)] shaking
protocol that modifies on-site energies, i.e., �, rather than the
hopping strengths

J (ωt, t ) = j0 = const, (87a)

�(ωt, t ) = δ0 + 2δ1(t ) cos ωt (87b)

is conceptually similar. In the fourth order it delivers a num-
ber of contributions that are leading, i.e., not dwarfed by
the second-order contributions. (The first and the third order
still vanish). For example, the renormalized on-site interaction
energy is

Ueff = U − 12 j2
0Uδ2

1 (t )

(h̄ω)4
+ O((h̄ω)−6). (88)
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In the second order, the only effect is the well-known [3]
modification of the tunneling strength

jeff = j0

[
1 −

(
2δ1(t )

h̄ω

)2

+ O((h̄ω)−4)

]
(89)

by the Bessel function of the zeroth order, identifiable by the
leading terms of its power series.

VIII. CONCLUSION

To summarize, the flow-equation approach is a versatile
tool useful in the study of driven quantum systems. This
method accomplishes a gradual transformation of the given
Hamiltonian from its original form to the desired (diago-
nal or block-diagonal) final form. The flow is implemented
by introducing an auxiliary flow variable and specifying an
anti-Hermitian generator that expresses the law of motion
along the flow variable. In our work we demonstrated the
applicability of such a scheme to the block diagonalization
of Kamiltonian (quasienergy) matrices that describe driven
quantum systems in the extended-space formalism. Impor-
tantly, we consider situations where the time dependence
is twofold: The system is driven be a force of a certain
frequency and its amplitude is additionally modulated as a
function of time. Thus, the drive is described as a superpo-
sition of a number of Fourier harmonics whose amplitudes
are time dependent. The outcome of the flow procedure is
the Floquet effective Hamiltonian and the complementary
micromotion operator that allow us to faithfully describe the
system’s time evolution. Alongside a previously proposed
Verdeny-Mielke-Minter generator [37], we introduced a mod-
ified (Toda) generator (52) that leads to similar flow Eqs. (53)
but also guarantees that the spectrum of the contributing
Fourier harmonics does not broaden beyond what was present
in the driven Hamiltonian. We note that the above procedure
in principle applies to both slow and rapid modulation of
the amplitude of the drive. However, concrete expressions
for the effective Hamiltonian and the micromotion operator
were obtained from the high-frequency expansion that as-
sumes that driving frequency sets the dominant scale. The
feature of nonproliferation of the Fourier harmonics during
the flow is particularly useful when enlisting the help of
computer algebra systems to obtain automated high-frequency
expansions for the effective Hamiltonian and the micromo-
tion operator. Such expansions are cumbersome to perform
manually beyond a few leading terms. We showed that in
the case when the Hamiltonian is spanned by a finite Lie
algebra, the derivation of the high-frequency expansion can
be straightforwardly implemented based on the automated so-
lution of a set of linear inhomogeneous differential equations.
The applicability of such a strategy is supported by studying
a selection of examples: a spin- 1

2 particle in an oscillating and
slowly rotating magnetic field, a minimal many-body system
consisting of two interacting bosons on a driven dimer, and a
two-level system subject to a linearly polarized drive.
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APPENDIX A: VALIDITY OF THE GENERATOR FOR
DISCRETE FLOW

Let us consider a discrete flow indexed by an integer-
valued variable running from zero to infinity and assume that
having reached a particular value of s, the Kamiltonian has the
form

K(s) = h̄ωN ⊗ 1H + P0 ⊗
+∞∑
i=0

H (0)
i (s)

+
∑
m �=0

(
Pm ⊗

+∞∑
i=s

H (m)
i (s)

)
. (A1)

Here, in the off-diagonal part of the Kamiltonian the power
series of Fourier components H (m) with m �= 0 start from the
order s, that is, the terms that behave as (h̄ω)−i with i ∈ [0, s −
1] have already been eliminated. For the sake of simplicity, in
this section we will not write the explicit dependence on time,
but will keep it in mind. Now we want to demonstrate that
the application of the following step of the flow governed by
Eq. (38) with the generator (46) will move the Kamiltonian
forward along the flow: The flow variable will reach the value
s + 1 and the power series of the Fourier components will
start from the order s + 1. Thus, the general form of Eq. (A1)
will be maintained subject to relabeling s → s + 1. Note that
the generator (46) is of the order (h̄ω)−(s+1), but is combined
with the first term on the right-hand side of Eq. (A1) which is
proportional to h̄ω. This allows us to eliminate the sth − order
terms. Of course, during the considered s → s + 1 step, the
flow will modify not only terms of orders s and s + 1, but
higher-order terms as well. However, in order to prove our
statement it is sufficient to focus on terms that behave as
(h̄ω)−s and (h̄ω)−(s+1). Let us expand the first term in Eq. (38),

eiS(s)K(s)e−iS(s) = K(s) + [iS (s),K(s)]

+ 1

2!
[iS (s), [iS (s),K(s)]] + · · · . (A2)

The first commutator can be written as

[iS (s),K(s)] = −
∑
m �=0

Pm ⊗ H (m)
s (s)

+
∑
m �=0

(
Pm

m
⊗

+∞∑
i=0

[
H (m)

s (s), H (0)
i (s)

]
h̄ω

)

+ P0 ⊗
∑
m �=0

+∞∑
i=s

[
H (m)

s (s), H (−m)
i (s)

]
mh̄ω

+
∑
m �=0

∑
k �={0,m}

Pk ⊗
+∞∑
i=s

[
H (m)

s (s), H (k−m)
i (s)

]
mh̄ω

.

(A3)
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Now we need to consider separately two cases: s = 0 and s �
1. For s � 1, we may drop the two last terms from Eq. (A3):

[iS (s),K(s)] = −
∑
m �=0

Pm ⊗ H (m)
s (s)

+
∑
m �=0

Pm ⊗
[
H (m)

s (s), H (0)
0 (s)

]
mh̄ω

+ O

(
1

(h̄ω)s+2

)
. (A4)

The leading term here is the first term on the right-hand
side; when added to the Kamiltonian, it will eliminate the
sth − order term of the m �= 0 Fourier components that ap-
pear in the block off-diagonal part. The double commutator
[iS, [iS,K]] and subsequent nested commutators in Eq. (A2)
contribute to orders higher than s + 1 and need not be con-
sidered. The second term on the right-hand side of Eq. (38)

reads

− ih̄eiS(s) de−iS(s)

dt
= ih̄[iṠ (s)] + ih̄

2!
[iS (s), iṠ(s)] + · · ·

= ih̄
∑
m �=0

Pm ⊗ Ḣ (m)
s (s)

mh̄ω
+ O

(
1

(h̄ω)s+2

)
.

(A5)

Summarizing Eqs. (A2), (A4), and (A5), one can write recur-
sion expressions for the transformed Kamiltonian K(s + 1).
The Fourier components read H (m �=0)

i (s + 1) = 0 for i ∈ [0, s]
and

H (m �=0)
s+1 (s + 1) = H (m)

s+1(s) +
[
H (m)

s (s), H (0)
0 (s)

]
mh̄ω

+ iḢ (m)
s (s)

mω
.

(A6)

The relevant contributions to the zeroth Fourier component
remain unchanged, H (0)

i (s + 1) = H (0)
i (s) for i ∈ [0, s + 1].

Proceeding to the case s = 0, one should repeat the cor-
responding analysis starting from Eq. (A3). The analog of
Eq. (A4) reads

[iS (0),K(0)] = −
∑
m �=0

Pm ⊗ H (m)
0 (0) +

∑
m �=0

Pm ⊗
[
H (m)

0 (0), H (0)
0 (0)

]
h̄ω

+ P0 ⊗
∑
m �=0

[
H (m)

0 (0), H (−m)
0 (0)

]
mh̄ω

+
∑
m �=0

∑
k �={0,m}

Pk ⊗
[
H (m)

0 (0), H (k−m)
0 (0)

]
mh̄ω

+ O

(
1

(h̄ω)2

)
. (A7)

Now also the double commutator from Eq. (A2) has to be taken into account:

[iS (s), [iS (s),K(s)]]
2!

= −P0 ⊗
∑
m �=0

[
H (m)

0 (0), H (−m)
0 (0)

]
2mh̄ω

−
∑
m �=0

∑
k �={0,m}

Pk ⊗
[
H (m)

0 (0), H (k−m)
0 (0)

]
2mh̄ω

+ O

(
1

(h̄ω)2

)
. (A8)

Thus the recursive expressions for the m �= 0 Fourier components read H (m �=0)
0 (1) = 0 and

H (m �=0)
1 (1) = H (m)

1 (0) +
[
H (m)

0 (0), H (0)
0 (0)

]
mh̄ω

+
∑

k �={0,m}

[
H (k)

0 (0), H (m−k)
0 (0)

]
2kh̄ω

+ iḢ (m)
0 (0)

mω
, (A9)

while for the zeroth Fourier component we have H (0)
0 (1) =

H (0)
0 (0) and

H (0)
1 (1) = H (0)

1 (1) +
∑
m �=0

[
H (m)

0 (0), H (−m)
0 (0)

]
2mh̄ω

. (A10)

Equations (A9) and (A10) can be simplified by taking into
account that H (m)

1 (0) = 0 and H (m)
0 (0) = h(m); thus in terms

of the Fourier components of the driven Hamiltonian

H (m �=0)
1 (1) = [h(m), h(0)]

mh̄ω
+

∑
k �={0,m}

[h(k), h(m−k)]

2kh̄ω
+ iḣ(m)

mω

(A11)

and

H (0)
1 (1) =

∑
m �=0

[h(m), h(−m)]

2mh̄ω
. (A12)

Now let us return to the case s � 1. By looking at Eqs. (A4)
and (A5), one can see that at the flow step s → s + 1 the
diagonal Fourier components H (0)

i are not affected for i ∈
[0, s + 1]. Then one can ask at which lowest order the di-
agonal Fourier components are affected. From the third term
of Eq. (A3) one can see that the diagonal Fourier component
is modified only with terms proportional to (h̄ω)−(2s+1). This
means that having obtained the Kamiltonian K (s), we can
claim that its diagonal blocks have converged up to the order
2s, because further steps of the flow will not modify these
terms. The upshot of the argument is that from the Kamilto-
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nian K (s) we can extract the FE Hamiltonian as

heff =
2s∑

i=0

H (0)
i (s) + O

(
1

(h̄ω)2s+1

)
, (A13)

that is, the accuracy is much better than anticipated from
Eq. (45).

APPENDIX B: SOLUTION OF THE FLOW EQUATIONS (51)
IN TERMS OF HIGH-FREQUENCY EXPANSION

In this Appendix we solve Eq. (51) in terms of power series
in the inverse frequency. We thus assume that the amplitude
of the Fourier components h(m)(t ) and their time derivatives
d jh(m)(t )/dt j are O(1). For the sake of simplicity, in this
Appendix we will not write the explicit dependence on time,
but will keep it in mind. Each running Fourier component
H (m)(s, t ) is expanded as

H (m)(s) = H (m)
0 (s) + H (m)

1 (s) + H (m)
2 (s) + · · · , (B1)

where the expansion terms H (m)
j (s) ∼ O(1/(h̄ω) j ). The initial

conditions are

H (m)
0 (0) = h(m), (B2)

while for any j � 1 we have

H (m)
j (0) = 0. (B3)

Substituting Eq. (B1) into the left- and right-hand sides of
Eq. (51), we obtain the zeroth-order flow equations

dH (0)
0 (s)

ds
= 0,

dH (n)
0 (s)

ds
= −n2H (n)

0 (s). (B4)

The solutions to these equations are

H (0)
0 (s) = h(0), H (n)

0 (s) = h(n)e−n2s. (B5)

Here we can see that in the limit s → +∞ the off-diagonal
Fourier components vanish, while the diagonal Fourier com-

ponent gives the zeroth-order approximation of the FE
Hamiltonian heff (0) = h(0).

In the first order, Eq. (51a) gives

dH (0)
1 (s)

ds
= 2

h̄ω

+∞∑
m=1

m[h(m), h(−m)]e−2m2s. (B6)

By taking into account Eq. (B3), the solution to Eq. (B6) reads

H (0)
1 (s) =

+∞∑
m=1

[h(m), h(−m)]

mh̄ω

(
1 − e−2m2s

)
. (B7)

Taking the limit s → ∞, one obtains the first-order approxi-
mation of the FE Hamiltonian

heff (1) = lim
s→+∞ H (0)

1 (s) =
+∞∑
m=1

[h(m), h(−m)]

mh̄ω
. (B8)

In the first order Eq. (51b) gives the linear inhomogeneous
differential equation

dH (n)
1 (s)

ds
= −n2H (n)

1 (s) + in

ω
ḣ(n)e−n2s

+
∑
m �=n

m − n

h̄ω
[h(m), h(n−m)]e−[m2+(n−m)2]s. (B9)

The solution to Eq. (B9) corresponding to the initial condi-
tions (B3) reads

H (n)
1 (s) = n

(
i

ω
ḣ(n) − [h(0), h(n)]

h̄ω

)
se−n2s

+
∑

m �={0,n}

[h(m), h(n−m)]

2mh̄ω

(
e−n2s − e−[m2+(n−m)2]s

)
.

(B10)

One can see that in the limit s → +∞ the term H (n)
1 (s)

vanishes.
To proceed further, we collect the second-order terms of

Eq. (51a),

dH (0)
2 (s)

ds
=

+∞∑
n=1

2n

h̄ω

{[
H (n)

1 (s), H (−n)
0 (s)

] + [
H (n)

0 (s), H (−n)
1 (s)

]} =
∑
n �=0

[h(n), [h(0), h(−n)]]
(h̄ω)2

2n2se−2n2s

+
∑
n �=0

∑
m �={0,n}

[h(−n), [h(n−m), h(m)]]
(h̄ω)2

n

m

(
e−2n2s − e−[m2+n2+(n−m)2]s) + 2ih̄

∑
n �=0

[ḣ(n), h(−n)]

(h̄ω)2
n2se−2n2s. (B11)

The solution corresponding to the initial conditions (B3) reads

H (0)
2 (s) =

∑
n �=0

[h(n), [h(0), h(−n)]]
(h̄ω)2

1 − e−2n2s(2n2s + 1)

2n2

+
∑
n �=0

∑
m �={0,n}

[h(−n), [h(n−m), h(m)]]
(h̄ω)2

{
1−e−2n2s

2nm
− n

(
1 − e−[m2+n2+(n−m)2]s

)
m[m2 + n2 + (n − m)2]

}

+ ih̄
∑
n �=0

[ḣ(n), h(−n)]

(h̄ω)2

1 − e−2n2s(1 + 2n2s)

2n2
. (B12)
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Taking the limit, one obtains the second-order approximation of the FE Hamiltonian

heff (2) = lim
s→+∞ H (0)

2 (s)

= 1

(h̄ω)2

∑
n �=0

{
[h(n), [h(0), h(−n)]] + ih̄

[
ḣ(n), h(−n)

]
2n2

+
∑

m �={0,n}

[h(−n), [h(n−m), h(m)]](m − n)

n[m2 + n2 + (n − m)2]

}
. (B13)

Comparing the obtained results with those given in Ref. [40],
one does not immediately appreciate their equivalence. In-
deed, the third term of Eq. (B13) reads

A =
∑
n �=0

∑
m �={0,n}

[h(−n), [h(n−m), h(m)]] f (n, m), (B14)

with f (n, m) = (m − n)/n[m2 + n2 + (n − m)2], while the
corresponding term from Ref. [40] reads

B =
∑
n �=0

∑
m �={0,n}

[h(−n), [h(n−m), h(m)]]g(n, m), (B15)

with g(n, m) = 1/3nm. In Appendix D we show that A = B;
thus up to the second order the FE Hamiltonian obtained from
the flow Eqs. (51) coincides with the results in Ref. [40] as
well as in Refs. [33,34].

APPENDIX C: MICROMOTION OPERATOR OBTAINED
FROM THE FLOW EQUATIONS (51) IN TERMS OF

HIGH-FREQUENCY EXPANSION

In this Appendix we will find the micromotion opera-
tor (25) in the exponential form Umicro = exp(−iS), where
the Hermitian operator S = S0 + S1 + S2 + · · · is obtained
as a series expansion with respect to the inverse frequency.
With respect to Eq. (43), the extended-space unitary transfor-
mation D†(t ) can be obtained with the help of the Magnus
expansion in the exponential form D†(t ) = exp[i(S0 + S1 +
S2 + · · · )], where the exponent is expanded in power series
with respect to the inverse frequency. The relation between the
physical-space operator S j and the extended-space operator
S j = ∑

m Pm ⊗ S(m)
j is established by simply replacing the

shift operator Pm by the exponent eim(ωt+θ ): S j (ωt + θ, t ) =∑
m S(m)

j (t )eim(ωt+θ ). In terms of the generator iS (s), the log-
arithm of the operator D† reads (for the simplicity, in this
Appendix we will not write the explicit dependence on time,
but will keep it in mind)

i(S0 + S1 + S2 + · · · )

=
∫ +∞

0
iS (s1)ds1 + 1

2

∫ +∞

0

∫ s1

0
[iS (s1), iS (s2)]

× ds2ds1 + · · · , (C1)

where the generator reads

iS (s) =
∑
m �=0

m

h̄ω
Pm ⊗ H (m)(s). (C2)

Note that Eq. (50) differs from the obtained expression
(C2) because, similarly to Eq. (51), here we use the
rescaled flow variable s → s/(h̄ω)2. Since the expansion
of the Fourier components H (m)(s) = H (m)

0 (s) + H (m)
1 (s) +

H (m)
2 (s) + · · · was found analytically in Appendix B, we can

derive the analytical expressions for S0, S1, and S2. Let us
substitute Eq. (C2) into the right-hand side of Eq. (C1),

∑
m �=0

(
m

h̄ω
Pm ⊗

∫ +∞

0
H (m)

0 (s1)ds1

)

+
∑
m �=0

(
m

h̄ω
Pm ⊗

∫ +∞

0
H (m)

1 (s1)ds1

)

+
∑
m �=0

∑
n �=0

(
mn

2(h̄ω)2
Pm+n ⊗

∫ +∞

0

×
∫ s1

0

[
H (m)

0 (s1), H (n)
0 (s2)

]
ds2ds1

)
+ · · · . (C3)

This shows that S0 = 0. Using Eq. (B5) we get

S1 = 1

ih̄ω

∑
m �=0

Pm

m
⊗ h(m). (C4)

In order to obtain S2, let us first calculate the double
commutator∫ +∞

0

∫ s1

0

[
H (m)

0 (s1), H (n)
0 (s2)

]
ds2ds1

= [h(m), h(n)]
∫ +∞

0
e−m2s1

∫ s1

0
e−n2s2 ds2ds1

= [h(m), h(n)]

(
1

m2n2
− 1

n2(m2 + n2)

)
. (C5)

Next, by using Eq. (B10), we evaluate the integral∫ +∞

0
H (m)

1 (s1)ds1 = i

ωm3
ḣ(m) − [h(0), h(m)]

m3h̄ω

+
∑

n �={0,m}

[h(n), h(m−n)]

2nh̄ω

×
(

1

m2
− 1

n2 + (m − n)2

)
. (C6)

Now one can collect the second and third terms of Eq. (C3),

S2 = 1

2i(h̄ω)2

∑
m �=0

Pm ⊗
[

2
ih̄ḣ(m)

m2
+ 2

[h(m), h(0)]

m2

+
∑

n �={0,m}
[h(n), h(m−n)]

(
1

nm
− 1

(m − n)2 + n2

)]

+ i

4(h̄ω)2
P0 ⊗

∑
m �=0

[h(m), h(−m)]

m2
. (C7)
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The obtained result can be simplified. The term proportional
to P0 is zero because any positive-m term will be compensated
by a corresponding negative-m term. Another simplification
results from the fact that

A =
∑
m �=0

∑
n �={0,m}

Pm ⊗ [h(n), h(m−n)]

(m − n)2 + n2
(C8)

is equal to zero. Indeed, by applying the transformation of the
second variable n = m − n′ we get

A = −
∑
m �=0

∑
n′ �={0,m}

Pm ⊗ [h(n′ ), h(m−n′ )]

(m − n′)2 + n′2 , (C9)

which shows that A = −A, and thus A = 0. Therefore,
Eq. (C7) is simplified to

S2 = 1

2i(h̄ω)2

∑
m �=0

Pm ⊗
[

2
ih̄

m2
ḣ(m) + [h(m), h(0)]

m2

+
∑
n �=0

[h(n), h(m−n)]

nm

]
. (C10)

Comparing (C4) and (C10) with the micromotion operator
obtained in Ref. [40], we conclude that they coincide.

APPENDIX D: PROOF THAT TWO QUANTITIES
(B14) AND (B15) ARE EQUAL

Let us verify that the quantities (B14) and (B15) are equal.
The expression (B14) reads

A =
∑
n �=0

∑
m �={0,n}

[h(−n), [h(n−m), h(m)]] f (n, m), (D1)

whereas the expression (B15) is of the same form but in place
of f (n, m) features a different function g(n, m). Such an ambi-
guity arises because the summation over the specified values n
and m contributes the same commutators from different terms.
For example, a simple inspection shows that, for n = 1, terms
with m = −1 and m = 2 contribute to the same commutator
[h(−1), [h(2), h(−1)]]. In fact, the same commutator is produced
two more times from the remaining terms of the double sum.

To rectify the situation, let us now show that Eq. (D1) can
be written in an unambiguous way in terms of commutators of
the form [h(− j), [h( j+�), h(−�)]] and [h( j), [h(− j−�), h( j)]] with
positive j and �. In other words, all commutators are thus
cast into a standard form where a positive-indexed Fourier
component is flanked by two negatived-indexed ones or vice
versa. Note that the Fourier indices of all three components
participating in a triple commutator sum to zero and zero
indices are excluded. Thus one always has two negative in-
dices and a positive one or the other way around. As we will
show shortly, the desired transformation is achieved by (i)
exchanging the order of the two Fourier components in the
inner commutator and (ii) applying the Jacobi identity.

Let us start by observing that the summation∑
n �=0

∑
m �={0,n} covers six sectors:

(i) m < 0 < n, (iv) m < n < 0,

(ii) 0 < m < n, (v) n < m < 0,

(iii) 0 < n < m, (vi) n < 0 < m.

Listed in the left (right) column are the three cases that corre-
spond to the three possible ways to locate m relative to zero
and positive (negative) n.

Case (i) is immediately in the form that we want. We
relabel n = j and m = −� and write∑

n>0

∑
m<0

[h(−n), [h(n−m), h(m)]] f (n, m)

=
∑
j>0

∑
�>0

[h(− j), [h( j+�), h(−�)]] f ( j,−�). (D2)

Case (iii) is one that requires the inversion of the order of
operators in the inner commutator. We relabel n = j and
m = j + � and obtain∑

n>0

∑
m>n

[h(−n), [h(n−m), h(m)]] f (n, m)

= −
∑
j>0

∑
�>0

[h(− j), [h( j+�), h(−�)]] f ( j, j + �). (D3)

Finally, case (v) is one that requires the application of the
Jacobi identity and subsequent inversion of the inner com-
mutator in one of the two resulting terms. Carrying out the
algebra and introducing positive indices j and � as above, we
find∑

m<0

∑
n<m

[h(−n), [h(n−m), h(m)]] f (n, m)

=
∑
j>0

∑
�>0

[h(− j), [h( j+�), h(−�)]] f (− j − �,−�)

−
∑
j>0

∑
�>0

[h(− j), [h( j+�), h(−�)]] f (− j − �,− j). (D4)

The considered cases (i), (iii), and (v) cover the terms that
lead to a positive-indexed Fourier component flanked by two
negative-indexed ones. All in all, they sum up to the final
result ∑

m<0

∑
n<m

[h(−n), [h(n−m), h(m)]] f (n, m)

=
∑
j>0

∑
�>0

[h(− j), [h( j+�), h(−�)]] f̃ ( j, �), (D5)

with

f̃ ( j, �) = f ( j,−�) − f ( j, j + �)

+ f (− j − �,−�) − f (− j − �,− j). (D6)

Using

f (n, m) = m − n

n[n2 + m2 + (m − n)2]
, (D7)

we find

f̃ ( j, �) = −1

j( j + �)
, (D8)

and using

g(n, m) = 1

3nm
, (D9)
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we find

g̃( j, �) = −1

j( j + �)
. (D10)

The consideration of cases (ii), (iv), and (vi) is identical in
spirit and restructures the complementary case where a sin-
gle negative-indexed Fourier component is flanked by two
positive-indexed ones.

APPENDIX E: TODA FLOW EQUATIONS FOR THE CASE
OF A LIMITED NUMBER OF HARMONICS

In this Appendix we prove the statement made in the main
text: If the initial condition for Eq. (53b) has a limited number
of nonvanishing Fourier harmonics at s = 0, i.e., H (n)(0, t ) =
0 for all |n| > n0, then these high harmonics (with |n| > n0)
may be neglected altogether since they will not be populated
in the course of the flow. This implies that the flow needs
to be analyzed only for the limited spectrum with harmon-
ics |n| � n0. For notational simplicity, we will not write the
explicit dependence on time, but will keep it in mind.

Let us first rewrite Eq. (53b) as

dH (n)(s)

ds
= −n sgn(n)H (n)(s) + i

ω
sgn(n)Ḣ (n)(s)

− sgn(n)

h̄ω
[H (0)(s), H (n)(s)]

+
∑

m �={0,n}

sgn(m − n)

h̄ω
[H (m)(s), H (n−m)(s)]

(E1)

and focus on the last term of Eq. (E1). We distinguish two
cases: when n is odd and when n is even. In both cases, instead
of m we introduce new index l = 2m − n. For an odd n we
have l = {±1,±3, . . .}, whereas for even n the permissible
values of l read l = {0,±2,±4, . . .}. From the condition m �=
{0, n} we obtain l �= ±n. Thus, for the case of an odd value of
n the term in question reads

∑
l={±1,±3,...,�=±n,...}

sgn

(
l − n

2

)
[H ((n+l )/2)(s), H ((n−l )/2)(s)].

(E2)
The denominator 2 in the argument of the sign function sgn(·)
can be omitted. We split Eq. (E2) into two terms separating
positive and negative values of l and introduce the replace-

ment l ′ = −l for the negative l ′s with the result∑
l ′={1,3,...,�=|n|,...}

sgn(−l ′ − n)[H ((n−l ′ )/2)(s), H ((n+l ′ )/2)(s)]

=
∑

l ′={1,3,...,�=|n|,...}
sgn(l ′ + n)[H ((n+l ′ )/2)(s), H ((n−l ′ )/2)(s)].

(E3)

We now sum the obtained expression with its counterpart for
positive values of l and obtain∑

l={1,3,...,�=|n|,...}
{sgn(n + l ) − sgn(n − l )}

× [H ((n+l )/2)(s), H ((n−l )/2)(s)]. (E4)

Let us now consider the combination of sign functions in the
curly braces. For l < |n| the expression in the braces yields
zero: If n is positive, then n + l > 0 and n − l > 0; if n is
negative then n + l < 0 and n − l < 0. On the other hand,
for l > |n| the terms in parentheses are equal to 2. Thus, the
expression in Eq. (E4) can be simplified to

2
∑

l={|n|+2,|n|+4,...}
[H ((n+l )/2)(s), H ((n−l )/2)(s)]. (E5)

By performing a similar procedure that led from Eq. (E2)
to Eq. (E5) for the case of n even, one arrives at the same
expression (E5). Therefore, Eq. (E1) transforms to

dH (n)(s)

ds
= −n sgn(n)H (n)(s) + i

ω
sgn(n)Ḣ (n)(s)

− sgn(n)

h̄ω
[H (0)(s), H (n)(s)]

+ 2

h̄ω

∑
l={|n|+2,|n|+4,...}

[H ((n+l )/2)(s), H ((n−l )/2)(s)].

(E6)

From Eq. (E6) one can see that if n > |n0|, even with small-
est possible l = |n| + 2, one of the indices of the Fourier
harmonics (n + l )/2 = (n + |n|)/2 + 1 and (n − l )/2 = (n −
|n|)/2 − 1 will have an absolute value higher than n0, and
thus the commutator will vanish. All the other terms on the
right-hand side of Eq. (E6) also vanish for n > |n0|.

For harmonics with small indices n � |n0|, the index l in
Eq. (E6) can be restricted to l = {|n| + 2, |n| + 4, . . . , |n| +
2(n0 − |n|)}. Finally, Eq. (E6) reads [here we rename the
index l → (l − |n|)/2]

dH (n)(s)

ds
=

⎧⎪⎪⎨
⎪⎪⎩

−nH (n)(s) + i
ω

Ḣ (n)(s) + [H (n) (s),H (0) (s)]
h̄ω

+ 2
h̄ω

∑n0−n
l=1 [H (n+l )(s), H (−l )(s)] for 0 < n � n0

nH (n)(s) − i
ω

Ḣ (n)(s) + [H (0) (s),H (n) (s)]
h̄ω

+ 2
h̄ω

∑n0+n
l=1 [H (l )(s), H (n−l )(s)] for − n0 � n < 0

0 for |n| > n0.

(E7)

The flow equation for the zeroth Fourier harmonic reads

dH (0)(s)

ds
= 2

h̄ω

n0∑
m=1

[H (m)(s), H (−m)(s)]. (E8)
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APPENDIX F: AUTOMATED EXPANSION OF THE FE HAMILTONIAN AND MICROMOTION OPERATOR FOR THE RABI
LINEARLY POLARIZED DRIVE

We perform the automated solution of the flow Eqs. (53) with the initial conditions (58). For φ = 0, the effective Hamiltonian
reads (h̄ = 1)

heff = σx

[
g(t ) − g(t )3

4ω2
+ 3�g(t )3

16ω3
+ −6g(t )g′(t )2 + 7g(t )2g′′(t ) − 7�2g(t )3 − 8g(t )5

64ω4

]
+ σy

[
−g(t )2g′(t )

16ω3
+ �g(t )2g′(t )

16ω4

]

+ σz

[
�

2
+ g(t )2

2ω
+ −�g(t )2

4ω2

g′(t )2 − g(t )g′′(t ) + 2�2g(t )2

16ω3
+ −3�g′(t )2 + 3�g(t )g′′(t ) − 2�3g(t )2 + �g(t )4

32ω4

]
. (F1)

Higher-order contributions were obtained (also in the general case φ �= 0) but are not suitable for reproduction on a journal page.
The MATHEMATICA script used to generate expansions up to the fifth order is available from [72].
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