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Floquet chiral hinge modes and their interplay with Weyl physics in a three-dimensional lattice
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We demonstrate that a three-dimensional time-periodically driven (Floquet) lattice can exhibit chiral hinge
states and describe their interplay with Weyl physics. A peculiar type of the hinge states is enforced by the
repeated boundary reflections with lateral Goos-Hänchen–type shifts occurring at the second-order boundaries
of our system. Such chiral hinge modes coexist in a wide range of parameter regimes with Fermi-arc surface
states connecting a pair of Weyl points in a two-band model. We find numerically that these modes still preserve
their locality along the hinge and their chiral nature in the presence of local defects and other parameter changes.
We trace the robustness of such chiral hinge modes to special band structure unique in a Floquet system allowing
all the eigenstates to be localized in quasi-one-dimensional regions parallel to each other when open hinge
boundaries are introduced. The implementation of a model featuring both the second-order Floquet skin effect
and the Weyl physics is straightforward with ultracold atoms in optical superlattices.
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I. INTRODUCTION

In recent years, researches have demonstrated that time-
periodically driven (Floquet) systems can show intriguing and
unique effects that find no counterparts in nondriven systems.
Examples include anomalous Floquet topological insulators
featuring robust chiral edge modes for vanishing Chern num-
bers [1–11] and discrete time crystals [12–23]. The periodic
driving shifts the fundamental theoretical framework from fo-
cusing on Hamiltonian eigenproblems to the unitary evolution
operators genuinely depending on time, resulting in a plethora
of new concepts and methods such as space-time winding
numbers [2] and spectral pairing [24]. In this context, it ap-
pears natural and tantalizing to explore possible new classes
of periodically driven systems that go beyond descriptions by
traditional theories.

In this paper, we show that time-periodic driving of a three-
dimensional (3D) lattice can give rise to a new type of chiral
hinge (i.e., second-order boundary) states. Such hinge modes
are associated with a reorganization of the Floquet eigenstates
in response to shifting from periodic to open boundary condi-
tions. The phenomena may be intuitively understood starting
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from a fine-tuned point, where the quasienergy bands have
linear dispersion along only one direction and remain flat
along the other two. When open hinge boundaries are intro-
duced, this leads to reorganization of eigenstates of the system
into a set states of the quasi-one-dimensional nature orienting
parallel to each other and located at various distances from the
hinge. Among them, the modes closest to certain lattice hinge
correspond to trajectories with unidirectional (chiral) motion
within each driving period.

Importantly, the counterpart of such a chiral hinge mode
with opposite chirality resides on the other side of the lattice.
Therefore, the chiral transport carried by these hinge modes
would be preserved under a small perturbation assuming it
does not mix eigenstates spatially separating far away from
each other. Such a robustness is verified numerically by ob-
serving the particle transport encountering perturbations in the
form of parameter change and local defects.

Surface modes exist widely under various circumstances,
and it is helpful to mention what may be different in our
system. First, unlike the case of (Floquet) higher-order topo-
logical phases [25–34], the hinge states studied here are
formed inside the bulk spectrum near zero quasienergy, as can
be seen in Fig. 2 column (2). Their existence and robustness,
therefore, requires a new theoretical explanation without in-
voking a bulk gap. Second, the localization of modes at the
boundaries resembles the non-Hermitian skin effect [35–41],
with a notable difference being the reduced dimensionality
which may be thought of as a higher-order skin effect. Third,
different from one-dimensional (1D) periodically driven lat-
tices [42] exhibiting helical modes, in our system the modes
with opposite chirality residing at opposite hinges are well
spatially separated, so the scattering due to a local pertur-
bation would not reverse the chiral direction of the particle
transport.
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The aforementioned hinge states coexist with Weyl physics
[43–52] when parameters are tuned away from the limit of
unidirectional dispersionless motion. In that case, a pair of
Weyl points is created at quasienergy π leading to a Fermi-arc
surface (i.e., first-order boundary) states. We find numerically
that the parameter regime of the hinge states overlaps consid-
erably with that for the Weyl physics, signaling a simultaneous
observation of both phenomena in a unified experimental
setting.

The model system proposed and studied here consists of
a simple, stepwise modulation of tunneling matrix elements
involving six steps. It generalizes to three dimensions a two-
dimensional lattice model introduced by Rudner et al. [2]
for studying anomalous Floquet topolgical insulators (see
also Ref. [1]). The latter 2D tunnel modulation has been
recently applied to ultracold atoms for the realization of
anomalous topological band structures [11]. Our 3D model
can equally be implemented with ultracold atoms using such
a stepwise tunnel modulation, now in 3D optical superlattices.
Furthermore, aside from giving rise to a new phenomenon,
the unconventional chiral second-order Floquet skin effect,
the model proposed here also provides a simple recipe for the
implementation of Weyl physics by means of time-periodic
driving.

This paper is structured as follows. In Sec. II a 3D
periodically driven lattice is defined. Subsequently, the char-
acteristic features of the bulk and hinge physics are considered
in Secs. III and IV. The experimental implementation of
our model, using ultracold atoms in modulated superlat-
tices, is discussed in Sec. V, followed by the concluding
Sec. VI. Additional technical details are presented in four
Appendixes A–D.

II. MODEL

Consider a bipartite cubic lattice with alternating A-B
sublattices in all three Cartesian directions. The lattice is
described by a time-periodic Hamiltonian H (t + T ) = H (t ),
with the driving period T divided into six steps. In each step,
tunneling matrix elements −J between sites rA of sublattice
A and neighboring sites rA ± aeμ of sublattice B are switched
on, with μ = x, y, z. During the driving period T the tunneling
steps appear in a sequence μ± = x+, y+, z+, x−, y−, z−,
as illustrated in Fig. 1(a).1 Within each step the evolution
is determined by a coordinate-space Hamiltonian H±μ =
−J

∑
rA

(|rA〉〈rA ± aeμ| + |rA ± aeμ〉〈rA|), where −J is the
tunneling matrix element, rA specifies the location of sublat-
tices A, and a is the lattice spacing such that rA ± aeμ denotes
the locations of sites in sublattice B neighboring to the sub-
lattice A site rA. The tunneling processes occurring in each of
the driving steps are characterized by a single dimensionless
parameter, the phase

φ = −JT

6h̄
. (1)

1Without including the tunneling along the z direction described by
third and the sixth driving steps, the dynamics reduces to a 2D motion
in a periodically driven square lattice considered in Refs. [2,5,11].

FIG. 1. (a) Bonds connected during the driving steps 1 to 6.
(b) Bulk trajectories within a Floquet cycle at the fine-tuned point
φ = π/2. Depending on the starting sublattice, particles will travel
in opposite directions along the cubic diagonal d = (1,−1, 1) within
a period. (c) Trajectories at the same φ = π/2 but with a surface
termination (open boundary). Particles starting from sublattice A (or
B) near the y = 1 (or x = 1) surface would have their dynamics
impeded by the open boundary at a certain driving step. That results
in a switch of sublattice after a Floquet cycle, and therefore the
direction of the trajectory is reversed after the reflection from the sur-
face. (d) The hinge formed by two intersecting terminating surfaces
renders unidirectional modes at φ = π/2. The figure shows two of
the modes closest to the hinge starting at a site of B (lower plot) or
A (upper plot) sublattices directly at the hinge. Each color for the
arrow denotes one Floquet cycle. The lower panel of (d) shows the
mode situated directly at the hinge which undergoes a unidirectional
motion along z within a period.

The one-cycle evolution operator (or Floquet operator)

UF = T e−(i/h̄)
∫ T

0 dtH (t ), (2)

whose repeated application describes the timeevolution in
stroboscopic steps of the driving period T , can be decomposed
into terms corresponding to the six driving stages

UF = Uz−Uy−Ux−Uz+Uy+Ux+. (3)

When dealing with the bulk dynamics we impose periodic
boundary conditions in all three spatial directions. The evo-
lution operators for the individual driving steps can then be
represented as

Uμ±(k) = e− iT
6h̄ Hμ±(k) = e−iφ(τ1 cos kμ∓τ2 sin kμ ), (4)

where τ1,2,3 are Pauli matrices associated with the sublattice
states A (corresponds to spin-up state) and B (corresponds to
spin-down state) and where kμ with μ = x, y, z denotes the
Cartesian components of the quasimomentum vector k. Here
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FIG. 2. Table showing energy spectra and Floquet modes. The phases of the system are indicated in the vertical axis on the left. The
table’s rows refer to the driving parameters φ = π/8, π/3, π/2, corresponding to the metallic phase, the Weyl semimetal/hinge phase, and the
fine-tuned point, respectively. The columns represent periodic and open boundary conditions (PBC and OBC) along the specified directions.
The system sizes are Lx = Ly = 40 in column (1), 20 in (2), and 16 in (3). Columns (1) and (2) contain energy spectra projected onto kz.
Although the spectra for fully periodic and open boundary conditions in x and z directions are almost identical in the metallic phase (φ = π/8),
they are very different in the WSM and hinge phase (φ = π/3) and at fine tuning (φ = π/2). The difference is a result of the formation of
chiral hinge modes for open boundary conditions in x and z directions (column 2). This can be inferred also from the dot size reflecting the
inverse participation ratio with respect to the site basis as a measure for localization, as well as from the color code indicating the mean distance
to two opposite hinges and interpolating from blue for one hinge over black near the center of the system to red for the other hinge. The green
dots mark the Weyl points. We also plot the real-space densities of various Floquet modes for open boundary conditions along x and y (column
2) or all (column 3) directions.

and in the following, we will use a dimensionless description,
where time, energy, length, and quasimomentum are given in
units of T, h̄/T , a, and h̄/a, respectively. The quasienergies
En,k and the Floquet modes |n, k〉 are defined via the eigen-
value equation for the Floquet operator

UF |un,k〉 = exp(−iEn,k)|un,k〉. (5)

We first note that the only global symmetry satisfied by the
Floquet operators (3) and (4) is a particle-hole flip � = CK ,
where Ki = −iK is complex conjugation and C = τ3 the third
Pauli matrix. Thus, the system belongs to class D in Altland-
Zirnbauer notation [53,54]. The Floquet operator satisfies
CUF (k)C−1 = U ∗

F (−k) [3,4], and therefore the quasienergies

must appear in pairs E1,k = −E2,−k. Meanwhile, the system
obeys the inversion symmetry PUF (k)P−1 = UF (−k), with
P = τ1, enforcing that for each band one has En,k = En,−k.
Together, we see that the Floquet spectrum has pairs of states
with quasienergies E1,k = −E2,k. This means possible gaps
or nodal points and lines can, modulo 2π , appear only at
quasienergy 0 or π .

At kx = ky = kz = ±π
2 (mod π ), Eqs. (3) and (4) yield

UF = 1, so that En,k = 0. Therefore, the quasienergy spec-
trum is always gapless at quasienergy 0 (modulo 2π ),
regardless of the driving strength φ. Then, the two-band spec-
trum could only possibly open up a gap at quasienergy equal
to π (modulo 2π ). To draw a complete phase diagram, we
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first note that flipping the sign of φ amounts to a particle-hole
transformation UF |−φ = CUF |φC−1, and from the previous
analysis we see that such a flip does not change the spectrum.
Furthermore, from e−iφn̂·τ = τ0 cos φ − in̂ · τ sin φ, where τ0

is the identity matrix, the periodicity of the Floquet opera-
tor with respect to the parameter φ is clearly seen: UF |φ =
UF |π+φ . In this way, the irreducible parameter range is φ ∈
[0, π/2] as illustrated in Fig. 2.

III. PHASE DIAGRAM FOR PERIODIC
BOUNDARY CONDITIONS

Before investigating the system with open boundary con-
ditions and the emergence of chiral hinge modes, let us first
consider the case of a translation-invariant system with peri-
odic boundary conditions. Here, we would focus on the better
understood Weyl physics as an anchor point to draw the phase
diagram, in order to use it as a reference frame to discuss
the new hinge states in the next section. We clarify that the
phase diagram for Weyl physics overlaps, but does not coin-
cide completely with that for the hinge states.

Let us begin with the topologically trivial high-frequency
(weak driving) limit corresponding to φ � 1. In that case one
can retain only the lowest-order terms in φ when expanding
the stroboscopic evolution operator UF of Eq. (3), resulting in

UF |φ→0 	 e−iφ2(cos kx+cos ky+cos kz )τ1 . (6)

The spectrum ±2φ
∑

μ=x,y,z cos kμ corresponds to that of a
static simple cubic lattice artificially described by two sublat-
tices, where the bands are folded as the Brillouin zone size
is halved. While the system remains gapless at quasienergy 0
for arbitrary φ, a characteristic feature of the high-frequency
(weak driving) regime is a finite-energy gap at quasienergy π ,
resulting from the fact that the band width is proportional to
φ and thus is small compared to the dimensionless driving en-
ergy h̄ω = 2π . This behavior can be observed in the spectrum
for φ = π/8 shown in Fig. 2 at the bottom of column (1).

Increasing the driving strength φ, the band width grows rel-
ative to 2π . When φ = π/6 the Floquet band, which is gapless
at quasienergy 0, starts to touch itself at quasienergy π and
momentum k = 0, as one can see in Fig. 3(d). Going to the
regime φ ∈ (π/6, π/2), the band-touching point splits into a
pair of Weyl points forming at quasienergy π with topological
charges ±1, as shown in Fig. 3(a). They are located at the
quasimomenta k = k0d along the diagonal vector

d = (1,−1, 1), (7)

with

k0 = ±(1/2) arccos[(1/2 − sin2 φ)/ sin2 φ] modulo π (8)

(see Appendix A), so that k0 → ±π/3 as φ → π/2. We
observe the emergence of surface Fermi-arc states connect-
ing the Weyl points, when comparing the spectrum with full
periodic boundary conditions to that with open boundary con-
ditions along the z direction, as illustrated in Figs. 3(b) and
3(c), respectively. Note that the reversed process of increasing
driving frequency (or equivalently, decreasing φ towards π/6)
would correspond to the usual scenario that two Weyl points
merge together at k = 0 and the spectrum becomes gapped
out.

FIG. 3. (a) The different phases can be distinguished by the pres-
ence or absence of Weyl points at quasienergy π . For φ = π/8, in
the metallic phase (φ < π/6), no Weyl points are present. At the
transition φ = π/6, the band-touching point appears at k = 0 (green
circle). For π/6 < φ < π/2 the band touching splits into two Weyl
points of opposite charge (green circles with ± sign) that separate
along the diagonal kx = −ky = kz, as shown for φ = π/3. At fine
tuning φ = π/2 the dispersion becomes flat in two directions and
the Weyl points disappear to reappear for φ > π/2 with reversed
charges (signs in green dots correspond to the limit φ = π/2 − 0).
(b)–(d) Quasienergy spectra versus kx, ky for periodic boundary con-
ditions in x and y and either periodic (b), (d) or open (c) boundary
conditions in the z direction. A surface Fermi arc can be observed
for φ = π/3 by comparing the spectra with periodic (b) and open
(c) boundary conditions the z direction. The orange surface de-
notes the contour formed by quasienergies closest to E = π at each
(kx, ky ). For φ = π/6 (d) a pair of Weyl points reduces to a single
band-touching point at the quasienergy E = π .

As the driving strength approaches the fine-tuned point
φ = π/2 − ε with ε � 1, the Weyl dispersion acquires a
highly anisotropic form shown in Fig. 4(b). The dispersion
remains steep along the diagonal coordinate k · d = kx − ky +
kz, but becomes increasingly flat in the other two directions.
Exactly at fine tuning φ = π/2, the constituent evolution
operators (4) reduce to Uμ±(k) = −i(cos kμτ1 ± sin kμτ2),
and the Floquet stroboscopic operator takes the form UF =
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FIG. 4. (a) Anisotropic 1D-like dispersion along the coordinate
kx − ky + kz at the fine-tuned point φ = π/2. (b) For a small de-
tuning, φ = π/2 − 0.1, the dispersion is no longer completely flat
in other two directions, and a pair of nonequivalent Weyl points is
formed along the diagonal at k = ±k0(1, −1, 1). Yet, the dispersion
remains highly anisotropic.

−e−i2τ3k·d . This provides the quasienergies

Ek,± = ±2k · d + (2m + 1)π, (9)

where m ∈ Z labels the Floquet bands, and where the upper
and lower branches labeled by ± now directly correspond to
sublattices A and B, i.e., ± → τ3. At this fine-tuned point the
Weyl points disappear and the dispersion Ek,± is completely
flat for the momentum plane normal to d, as one can see in
Fig. 4(a). Hence, a particle can only propagate along the di-
agonal d with a dimensionless velocity v± = ±2d, depending
on whether the particle occupies a site on the sublattice A or
B at the beginning of a driving cycle. Note that for fine-tuned
driving (φ = π/2), the Floquet Hamiltonian

HF ≡ −i ln UF = 2τ3d · k + τ0π (10)

is periodic in momentum space only thanks to the periodicity
in quasienergies. Such an effective Hamiltonian is character-
istic for periodically driven systems, and does not have a static
counterpart with finite-range hopping.

The fine-tuned dispersion can be understood by consider-
ing the dynamics in real space. For φ = π/2 in each step μ±
the particle is fully transferred from a sublattice A site posi-
tioned at rA to a neighboring site B situated at rB = rA ± eμ

or vice versa. During the six steps composing the driving pe-
riod, the particle follows the quasi-one-dimensional trajectory
shown in Fig. 1(b). Thus, after completing each period the
particle located on a site of sublattice A (B) is transferred by
+2d (−2d) to an equivalent site of the same sublattice, giving
rise to stroboscopic motion along the diagonal directions ±d
at the velocity v±.

Before leaving this section, we remark that the disappear-
ing of Weyl points at φ = π/2 is not because they are gapped
out (unlike at φ = π/6), but due to the accidental band-gap
closure in a whole plane with Weyl points residing on it, as
can be seen in Fig. 4 at φ = π/2. Consequently, there is no
need for the two Weyl points to merge at the same location
in Brillouin zone when they disappear in this way. More
specifically, starting from π/6 < φ < π/2 where Weyl points
are well defined, one can enclose a Weyl point with a gapped

surface (eigenstates from a certain band) surrounding it, where
the Weyl charge is the total Berry flux penetrating out of the
surface. At exactly φ = π/2, any such surrounding surface
would encounter a divergence of local Berry curvature as
the two bands become gapless in a whole plane containing the
Weyl point and thus are intersecting at any enclosing surfaces.
Weyl points and their charges therefore lose definitions at such
a fine-tuned point. When the phase φ exceeds π/2, the two
Weyl points reappear with opposite charges compared to the
φ < π/2 situation.

IV. CHIRAL HINGE MODES FOR OPEN
BOUNDARY CONDITIONS

An intriguing effect shows up when the system is subjected
to open boundary conditions with at least two properly cho-
sen boundary planes, where a special type of chiral modes
form at certain hinges. In that case, eigenstates of the system
reorganize into a set state of the quasi-one-dimensional nature
orienting parallel to each other and located at various dis-
tances from the hinge when open boundaries are introduced.
To gain an intuition, it will be useful to start from the fine-
tuned point φ = π/2 where the stroboscopic motion of the
particle at the hinge follows a classical trajectory in real space.
Subsequently, we will demonstrate numerically the robustness
of such chiral hinge modes against parameter changes and
inclusion of local defects.

Let us now fix first the notation for later use. We will
consider open boundary conditions with a face of a boundary
plane oriented perpendicular to a Cartesian axis μ = x, y, z.
For full open boundaries the atomic motion is restricted by
planes in all three Cartesian directions.

We will also investigate a semi-infinite system restricted
by two planes orthogonal to x and y, while keeping periodic
boundary conditions along the z direction. Note that the three-
fold symmetry x → y, y → z, z → −x would correspond to
shifting the time origin by T/6 for the Floquet operator (3),
which is merely a gauge transformation and does not change
physical observables. Therefore, choosing another combina-
tion of open and periodic boundary conditions along different
Cartesian directions results in identical phenomena.

Finally, since the boundaries are cut along the orthogonal
directions for a cubic lattice, which is not terminating along
the directions of Bravais vectors, it is more convenient to label
the lattice sites in both sublattices directly by their Cartesian
coordinates r = (x, y, z), with x, y, z taking integer values be-
tween 1 and L carrying units of the lattice constant. The sites
belong to the sublattice A (or B) for even (or odd) values of
x + y + z.

A. Fine-tuned driving

1. Real-space picture

We will commence our discuss of the hinge dynamics at the
fine-tuned point using the real-space picture. Subsequently, in
Sec. IV A 2 we will present a rigorous analysis of the hinge
states by going to the momentum representation along the
hinge direction. Let us consider the atomic motion for x � 1
or y � 1 confined by a single boundary plane at x = 1 or
y = 1, as illustrated in Fig. 1(c).
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Starting from a site deep inside the bulk of, say, sublat-
tice B, the particle will propagate stroboscopically on this
sublattice covering a distance −2d in diagonal direction in
each driving period, until approaching the boundary x = 1 or
y = 1. At the boundary, tunneling between the lattice sites B
and A cannot occur during one of the six steps of the driving
cycle. As a result, the particle changes the sublattice and starts
to propagate on the A sublattice in opposite direction. The two
colors on each panel of Fig. 1(c) denote two possible types
of such a reflection that are distinguished by the lattice site at
which the driving cycle starts leading to the reflection.

Specifically, a tunneling event is impeded in the first (dark
gray) or the fifth (yellow) driving step for a particle situated
right at the surface plane x = 1 (y = 1) or next to it x = 2
(y = 2), as marked by small planes in Fig. 1(c).

Let us next consider a similar motion of the particle in the
region x � 1 and y � 1 confined by two intersecting surface
planes x = 1 and y = 1. After the particle changes the sub-
lattice B → A at the x = 1 boundary, it travels in reversed
direction in steps of 2d until it eventually reaches the y = 1
surface and is again backreflected, this time with the sublattice
change A → B. In this way, the particle will move back and
forth between the x = 1 and the y = 1 surfaces which share a
hinge.

It is now important to note that each reflection is accompa-
nied by a lateral shift along the surface planes, as can be seen
in Fig. 1(c). Such lateral shifts during reflections resemble
the Goos-Hänchen effect occurring when light is reflected
at the boundary between two media. The lateral shift would
have stronger influence when the particle start from a location
closer to the hinge x = y = 1 or x = y = L where reflections
occur more frequently, as illustrated in Fig. 1(d). In particu-
lar, for particles starting from sublattice B at x = y = 1, the
dynamics is completely given by the lateral shift along the
−z direction, as one can see in the lower part of Fig. 1(d).
The corresponding eigenstate for Floquet operator would be
a single chiral mode localized along the hinge propagating
along −z. Similarly, at x = y = L, one can verify that another
chiral mode associated with sublattice A propagates along +z
direction. Note that these two modes are separated by the
whole system size, unlike in the 1D case [42] with two modes
of opposite chirality residing at the same location and thus are
subjected to backscattering on imperfections.

In the next Sec. IV A 2 we will see through rigorous cal-
culation that the whole xy plane can be divided into two
parts by an off-diagonal line joining x = 1, y = L and x =
L, y = 1, where eigenstates localized closer to x = y = 1 or
x = y = L hinges will carry the chiral motion along −z or
+z, respectively. Therefore, under perturbations, it will be the
eigenstates closest to the center “chirality border line” to lose
their chirality along z first, and the hybridization gradually
spreads towards the hinges as perturbation strengthens. Im-
portantly, the eigenstates right at the hinges x = y = 1 and
x = y = L do not involve any motion in the xy plane, as
can be seen in Fig. 1(d). They correspond to the genuine
chiral hinge modes described by the evolution operator UF

over a single period. That means the chirality of such a mode
does not depend on the ballistic trajectories finishing several
Floquet periods in the xy plane, and thus the closest hinge
mode should be more robust against imperfections. This is

FIG. 5. An example of a fine-tuned stroboscopic motion of a par-
ticle at the lower-left hinge. The picture shows the projection of the
particle’s trajectory in the xy plane. The sites of the B and A sublat-
tices are marked in blue and red, respectively. The particle is initially
at the site of the sublattice B characterized by the coordinates x =
M + 1 and y = 1, with even M = 4. This corresponds to the lower
row (y = 1) and the fifth column (x = 5). Subsequently, the particle
undergoes the stroboscopic evolution described by Eqs. (B3)–(B9) in
Appendix B. Dashed lines with arrows show stroboscopic reflections
from the planes x = 1 or y = 1. Bulk ballistic trajectories over one or
two driving periods are indicated by thin or thick solid arrows. The
particle returns to its initial site after 2M + 1 = 9 periods.

verified numerically away from fine-tuned point in Fig. 2
(second column), and also in Figs. 7 and 8 in the pres-
ence of local defects, as will be discussed more specifically
later.

Prior to going to a rigorous analytical calculation, we
make a side remark regarding the previous Weyl physics. The
general boundary reflections exchanging sublattices A and
B break particle-hole symmetry � = τ3K . But, that will not
destroy the Weyl physics because it reduces the symmetry
class from D to A, which still hosts a Z classification for point
defect (i.e., Weyl points) in a 3D Brillouin zone [54]. Further-
more, the orthogonal boundary we choose still preserves the
inversion symmetry and, therefore, Weyl points and their as-
sociated Fermi arcs in the open boundary systems would still
exhibit an inversion-symmetric fashion as found previously.
The only thing that might be slightly affected is the symmetry
E1,k = −E2,k for Fermi arc on the surface, while the Weyl
physics phase diagram concerns bulk spectrum and as L → ∞
surface effects would minimize. The hinge states discussed
in this section do not rely on the particle-hole symmetry
either.

2. Floquet states

Before carrying out analytical calculations of the Floquet
states at the fine-tuned φ = π/2, in Figs. 5 and 6 we illus-
trate the full path of a particle projected onto the xy plane
for reflections occurring at x = 1 and y = 1 surfaces. One
can see in these figures that the particle returns to the same
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FIG. 6. Like in Fig. 5 the particle is initially at the site of the
sublattice B with x = M + 1 and y = 1, but now with odd M = 5.
The particle returns to the initial site after 2M + 1 = 11 periods.

transverse position (x, y) after making two loops. Such a
closed trajectory contains two reflections at each boundary
x = 1 and y = 1, corresponding to the two different types of
reflections depicted in Fig. 1(b).

The backreflected particle propagates in a trajectory situ-
ated closer to the hinge or further away from it for the B → A
or A → B reflections, respectively. This is similar to changing
a track for a train before sending it backwards. Because of
such chiral Goos-Hänchen shifts, the particle visits a larger
number of B sites than A sites when traveling between the two
surface planes. Recalling that the ballistic motion over the B or
A sites takes place along the diagonal −d or d, the dynamics
projected onto the xy place is accompanied by motion in
−z or +z direction depending on the sublattice. Thus, one
arrives at an overall steady advance in the −z direction after
the particle completes a closed two-loop trajectory in the xy
plane containing more sites of the B sublattice. Therefore,
all eigenstates would occupy localized quasi-1D regions in
xy plane parallel to each other, each carrying certain group
velocity along z.

More precisely, as demonstrated in Appendix B, after four
reflections by the surfaces, a particle comes back to the orig-
inal point in the xy plane but shifts by −2 units in the z
direction to an equivalent lattice site. One can similarly ver-
ify that a particle comes back to the same (x, y) transverse
point after four reflections by the opposite x = L and y = L
planes accompanied by a shift by +2 lattice unites along the z
direction.

In this way, the particle’s trajectory starting from any lat-
tice site would roughly cover a quasi-1D region in the xy
plane along ex − ey directions, whose length is proportional
to the distance away from the hinge x = y = 1. All complete
double-loop trajectories in the xy plane would be associated
with a shift by −2 or +2 along z, depending on whether they
are closer to the x = y = 1 or x = y = L hinge. Although such
a picture applies to a particle situated further away from the
hinges, the advance in the −z or +z direction takes place also

for trajectories situated very close to the hinge x = y = 1 or
x = y = L where the particle is reflected simultaneously from
both hinge planes, as illustrated in Fig. 1(d) for the x = y = 1
hinge.

The fact that trajectories represent closed loops in the xy
plane allows us to construct analytically the eigenstates of the
stroboscopic evolution operator UF with open boundaries in
x, y and periodic boundary along z. The details are elaborated
in Appendix B while we outline the results and derivations
below. We would chiefly describe the hinge related to x = y =
1, while mention certain results for x = y = L directly.

Suppose the particle initially occupies a site of the sub-
lattice B with transverse coordinates y = 1 and x = M + 1, so
the particle is situated at the hinge surface x = 1 and is M � 0
sites away from the other y = 1 hinge surface, as illustrated in
Figs. 5 and 6 for M = 4 and 5. In that case, it takes 2M + 1
driving periods for the particle to come back to the initial
position (M + 1, 1) in the xy plane, while having shifted by
−2 lattice units in the z direction, i.e.,

(UF )2M+1|B, M + 1, 1, z〉 = −|B, M + 1, 1, z − 2〉. (11)

After averaging over such a full cycle involving 2M + 1 driv-
ing periods, the particle travels with an M-dependent mean
velocity of vM− = −2/(2M + 1) along the hinge axis z (see
Appendix B for more details). Here, |s, x, y, z〉 describes a
particle located at site (x, y, z) belonging to sublattice s = B =
−1 or s = A = 1 with s = (−1)x+y+z.

Let us now consider periodic boundary conditions in
z direction with z = 1, 2, . . . , 2Nz, i.e., |s, x, y, z + 2Nz〉 =
|s, x, y, z〉, while keeping open boundary conditions in x and y.
It is then convenient to introduce hybrid position-momentum
basis states

|s, x, y, kz〉′ = 1√
Nz

∑
z

eikzz|s, x, y, z〉. (12)

A basis vector |s, x, y, kz〉′ is characterized by a quasimo-
menta kz = mπ/Nz with m = 0, 1, . . . , Nz − 1, where kz is
defined modulo π , as the lattice periodicity equals to 2 length
units in the z direction. Equation (11) yields

(UF )2M+1|B, M + 1, 1, kz〉′ = −|B, M + 1, 1, kz〉′e2ikz . (13)

The above results are for a particle starting from the hinge
surface y = 1, x = M + 1, which traces out a closed loop
for its classical trajectory visiting 2M + 1 sites at different
stroboscopic moments. In a similar manner, if the particle
starts at any intermediate site of the trajectory at stroboscopic
moment pT ,

|M, kz, p〉 ≡ (UF )p|B, M + 1, 1, kz〉′, (14)

it will also finish the loop after 2M + 1 driving periods:

(UF )2M+1|M, kz, p〉 = −|M, kz, p〉e2ikz , (15)

with p = 0, 1, . . . , 2M. By superimposing the states
|M, kz, p〉 corresponding to all sites involved in the
stroboscopic trajectory, one can construct the Floquet hinge
states representing eigenstates of the Floquet evolution
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operator UF :

|M, kz, q〉 = 1√
2M + 1

2M∑
p=0

|M, kz, p〉

× exp

(
i
2πq − 2kz + π

2M + 1
s

)
, (16)

where the index q = 0, 1, . . . , 2M labels these modes. The
corresponding quasienergies for the eigenstates (16) situated
closer to the x = y = 1 reads as

EM,kz,q =
(

2πq − 2kz + π

2M + 1

)
mod 2π. (17)

An analogous dispersion but with an opposite slope (opposite
sign for the group velocity along z) can be obtained for the
states formed closer to the opposite hinge x = y = L. The
dispersion branches for both types of hinge modes reproduce
the spectrum shown in the row 1 and column (2) of Fig. 2. The
corresponding eigenstates are quasi-1D in the xy plane along
ey − ex and are plane waves along z.

Such a spectrum of the system with open boundary condi-
tions in x and y directions looks completely different from the
one for full periodic boundary conditions shown in column
(1) of Fig. 2 or Fig. 4(a), where in the latter case all the bulk
modes have the same positive or negative dispersion slope
(group velocity) vz = ±2. In contrast, for the beam geometry
[column (1) of Fig. 2] the spectrum is now organized into
Eq. (17), representing different quasi-1D eigenstates M sites
away from the hinge x = y = 1. Each eigenstate is character-
ized by a different group velocity

vM± = ± 2

2M + 1
(18)

decreasing with the distance M from the hinge, where “−” and
“+” correspond to the states located relatively closer to x =
y = 1 and x = y = L, respectively. The red and blue colors
in Fig. 2 indicate the mean distance of each mode from the
two relevant hinges. The dark red (blue) mode associated with
M = 0 is localized directly at the hinge x = y = 1 (x = y =
L) and propagates at the largest velocity in negative (positive)
z direction. Modes with a smaller slope have larger M and thus
are located further away from the particular hinge, as indicated
by the color. The real-space density of four different hinge
modes at φ = π/2 is illustrated in the real-space plot shown
in row 1 and column (2) of Fig. 2.

In addition, a measure for the degree of localization
of a mode |ψ〉 is the inverse participation ratio IPR =∑

j |〈 j|ψ〉|4, with real-space site states | j〉 and the Floquet
eigenstates |ψ〉. It is shown in the spectra of Fig. 2 via the
dot size roughly indicating the inverse of the number of sites
a mode is spread over. Thus, modes localized near the hinges
have larger IPR than those that are more spread over in the
xy plane locating further away from the hinges, indicating
that the latter modes with smaller chiral group velocities are
less narrowly localized in the xy plane than the former faster
modes located closer to the hinge.

In this way, the group velocity vM± along the z direction
with open boundaries along x, y is very different from the
projected group velocity vz = v · ez of a full periodic system.

This is due to the unidirectional bulk group velocity v = ±2d
and can be intuitively understood as follows. Each eigenstate
of the system with open boundary conditions involves four
boundary reflections, as can be inferred from Figs. 5 and 6.
Such an eigenstate is composed of two pairs of counterpropa-
gating plane waves representing the eigenstates of the original
periodic system propagating along the cubic diagonal ±d with
the z projection of the group velocity vz = ±2. Consequently,
the original group velocity in the bulk gets neutralized, and
the overall group velocity vM± along z is due to the combined
Goos-Hänchen shift over four times of boundary reflections.
As the Goos-Hänchen process occurs more frequently near
the hinges x = y = 1 and x = y = L, the magnitude of group
velocity vM,± = ±2/(2M + 1) is maximum at the hinges for
M = 0, while close to the central part where M ∝ L, the group
velocity vM± becomes rather small, and eventually vanishes
in the thermodynamic limit vM± ∝ 1/L → 0. This is quite
different from a usual crystal where modes closer to the center
of the bulk should be more insensitive to any boundary ef-
fects, while in our case one arrives at another situation where
vz = ±2 for the periodic boundary conditions, while for open
boundary conditions one has vM± → 0 for the modes near the
bulk center.

The observation that the whole (Floquet) spectrum and
the corresponding eigenstates of our system are completely
reorganized, when switching from periodic to open boundary
conditions, resembles the extensive accumulation of bound-
ary modes featured in the non-Hermitian skin effect [35–38].
Therefore, the formation of an extensive number of recon-
structed chiral hinge modes in our Floquet system might be
called chiral second-order Floquet skin effect, in analogy
to the terminology used for non-Hermitian systems [38]. A
subtle difference is that the eigenstates of a unitary Floquet
evolution operator are orthogonal to each other, unlike eigen-
states of non-Hermitian Hamiltonians that that are generally
nonorthogonal. It implies the counting rule that on average,
there can be at most one Floquet eigenstate per lattice site,
so an accumulation of states right at the boundary is not
possible in a Floquet system. Note also that the non-Hermitian
skin effect is associated with the exceptional points of the
non-Hermitian Hamiltonian when the boundaries are intro-
duced [36,37], whereas no exceptional points are formed for
periodically driven systems described by the unitary Floquet
evolution operators. More details on these issues are available
in Appendix C.

B. Beyond fine-tuned driving

Although the above analysis is based on ballistic trajecto-
ries at the fine-tuned driving parameter φ = π/2, we expect
the chirality of the hinge modes to be robust also against
perturbations and tuning away from φ = π/2. This applies
especially to the hinge states with larger chiral velocities,
which are situated closer to the hinge and thus are spatially
well separated from counterpropagating modes at the opposite
hinge. The chiral hinge modes persist for a rather wide range
of φ beyond φ = π/2. This can be observed from the example
of φ = π/3 (33.3% detuning, halfway across the Weyl phase
transition) displayed in Fig. 2 column (2) around kz = π/2
and E = 0. We can see that the hinge modes at smaller
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FIG. 7. The dynamics of a particle initially localized at the site
(x, y, z) = (1, 1, 16) for a system of 16 × 16 × 16 sites with full
open boundary conditions and fine tuned φ = π/2. The squared
wave function at different times is reflected in the opacity of the
plotted dots. Different colors indicate time. (a) Without defect. (b) In
the presence of a potential defect of energy 	 = 3π at the two sites
marked by the green tube. Additionally, we plot the squared wave
function of one hinge mode. (c) Snapshots of the time evolution in
the presence of the defect at different times.

distances M from the hinge still preserve their chirality along
the hinge, as expected previously. In turn, hinge modes with
larger M that are closer to the sample center are gradually
mixed with modes of opposite chirality and lose chiral nature
together with localization in the xy plane when φ deviates
away from φ = π/2.

We have also considered the exemplary eigenstates for a
cube geometry with full open boundary conditions along all
Cartesian axes x, y, and z presented in column (3) of Fig. 2
showing that for φ = π/2 and π/3 the chiral modes at certain
hinges are joined to form a closed loop respecting inversion
symmetry of the system [see also Fig. 7(a)]. The six hinges
not participating in this closed loop do not carry hinge modes
since their two boundary planes are not connected along the
diagonal direction d. Meanwhile, nonhinge modes represent-
ing the bulk dynamics all center along the cubic diagonal
[column (3) of Fig. 2].

In the previous sections we have made arguments that at
the fine tuning φ = π/2, the chiral modes locating right at the
hinge x = y = 1 (or x = y = L) do not involve the ballistic
motion in the xy plane over many driving periods, and there-
fore their chiral transporting feature should be preserved even
if they become hybridized with nearby modes carrying differ-
ent or no chirality. We now further test such an expectation by
checking the robustness of chiral hinge transports in the pres-
ence of local defects in Figs. 7 and 8. Here, we simulate the
dynamics of a particle in the presence of a defect for a system
with open boundary conditions in all three directions repre-
senting a generalization of the defect-free situation shown in

FIG. 8. As Fig. 7, but for φ = 0.9 × π/2, away from fine tuning.

column (3) of Fig. 2. Figure 7 illustrates the dynamics of a
particle initially located at a corner (x, y, z) = (1, 1, 16) of the
system, where two orthogonally oriented transporting hinges
meet, (a) for the fine-tuned situation without a defect and (b)
in the presence of a strong potential offset of 	 = 3π on
two neighboring hinge sites (indicated by a green tube) at
(x, y, z) = (1, 1, 8), (1, 1, 9), respectively. The corresponding
plots for non-fine-tuned driving with φ = 0.9(π/2) are pre-
sented in Fig. 8. We find that despite this strong defect the
chiral nature of the hinge modes ensures that no backscatter-
ing occurs at the defect and the majority of the wave packet
continues to follow chiral trajectories along the hinges. In
Figs. 7(b) and 8(b) we also plot representative eigenstates of

FIG. 9. Density distribution of a particle initially localized at the
corner site (x, y, z) = (1, 1, 16) after an evolution over 100 driving
cycles for the non-fine-tuned parameter φ = 0.9 × π/2, without de-
fect (a) and with a defect (b) [corresponding to the parameters of
Fig. 8(b)]. The densities are representative for late-time states in the
limit t → ∞ as similar distribution is found also after 1000 driving
cycles.
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the system with defects. These eigenstates remain localized at
the hinge, with only a small distortion compared to the situa-
tion without defect shown in column (3) of Fig. 2. That means
the localization properties of the particle carrying the chiral
motion along the hinge are not just an ephemeral phenomena.
Once the original particle distribution overlaps with such an
eigenstate, certain portion of those particles will always be
localized along the hinge undergoing constant chiral motion.
This is further verified in Fig. 9 for evolution over a long
time. It shows the time-evolved state after 100 driving cycles
for the non-fine-tuned system (φ = 0.9 × π/2) both without
defect (a) and with defect (b). Very similar distribution is
also found after even longer evolution, e.g., over 1000 driving
cycles; the densities are, thus, representative for late-time
states in the limit t → ∞. Note that such a process implies
the particle has encountered the defects for many (or infinite)
times when they loop over the connected hinges repeatedly,
without losing their localization the hinge and being scattered
away.

V. EXPERIMENTAL REALIZATION WITH ULTRACOLD
ATOMS IN OPTICAL LATTICES

A. Engineering of the driven lattice

Above, we have shown that the proposed modulation of
tunneling gives rise to a variety of phenomena, including the
robust creation of a pair of Weyl points, unidirectional bulk
transport, chiral Goos-Hänchen–type shifts, and the macro-
scopic accumulation of chiral hinge modes for open boundary
conditions corresponding to a chiral second-order Floquet
skin effect. The model itself is, nevertheless, rather simple
and its implementation with ultracold atoms in optical lattices
can be accomplished using standard experimental techniques.
All that is needed is a static cubic host lattice potential of
equal depth V0 in each Cartesian direction and a superlattice
potential, whose amplitudes along various diagonal lattice
directions are modulated in a stepwise fashion in time in order
to suppress or allow tunneling along the six different bonds
specified by our protocol. This can be achieved using the
following optical lattice potential:

V (r) = V0

∑
μ=x,y,z

cos2(2kLrμ)

+V1

∑
a,b=0,1

αab(t ) cos2 kL[x + (−1)ay + (−1)bz],

(19)

where only two of the four modulating lasers αab with a, b =
0, 1 are turned on in each driving step, as shown in Fig. 10.
Such a modulation provides the required six-stage driving of
the cubic lattice. Note that a similar modulation has recently
been implemented in two dimensions [11].

B. Detection of hinge dynamics

To observe the dynamics associated with the hinge
modes, one can apply the boxed potential achieved in re-
cent experiments [55–61]. There, thin sheets of laser beams
penetrate through the quantum gases creating a steep po-
tential barrier. Three pairs of such beams are imposed in

FIG. 10. The stepwise modulation of the dimensionless superlat-
tice amplitudes αab according to the protocol given in the table gives
rise to different dimerizations of the cubic lattice in each driving step,
that enables tunneling along the desired bonds.

a three-dimensional system, creating the sharp “walls” for
the box potential while leaving the central part of the gases
homogeneous.

Essentially, such a potential combined with our lattice
driving scheme immediately leads to the particle dynamics
described in Figs. 7 and 8. To take into account realistic
experimental situations, two modifications are adopted in our
following simulations. First, we consider the effect of a rela-
tively “softer” wall for the box potential with

Vbox(r) = Vb

2

∑
μ=x,y,z

(
2 + tanh

r (1)
μ − rμ

ξ
+ tanh

rμ − r (2)
μ

ξ

)
,

(20)
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FIG. 11. The dynamics of particles in a box potential with differ-
ent softness of the boundary. The initial density distribution takes a
Gaussian profile spreading over several lattice sites. The parameters
are φ = π/2,VbT/6h̄ = 7.5π . The initial Gaussian profile has the
center (x0, y0, z0) = (4, 4, 12) and width s0 = 0.75.

where the potential ramps up over a finite distance of roughly
4ξ near the boundaries r (1,2)

μ (see Fig. 11, for instance). The
second modification we adopt is that the initial state is not
taken to be localized on a single lattice site but described by a
Gaussian wave packet of finite width,

ψi=(x,y,z)(t = 0) = e−[(x−x0 )2+(y−y0 )2+(z−z0 )2]/2s2
0 . (21)

The results of the dynamics are presented in Figs. 11(c1)–
11(c3) and 11(d1)–11(d3), for the ideal sharp boundary (as
in Fig. 7) and the realistic softer boundaries in experimental
setting, respectively. We see that the chiral motion snap-

shots for the ideal and softer boundaries exhibit qualitatively
the same characters, signaling that a softer boundary does
not cause significant changes. This is consistent with the
previous simulation showing the robustness of hinge states
and their resulting chiral dynamics against local defects in
Figs. 7 and 8. The major difference from previous cases,
then, derives from the initial state that overlaps with more
than one set of eigenstates near the hinge, each with different
group velocities as given in Eq. (18). Finally, we mention
that some portion of initial particle distribution would reside
within the region with significant changes in Vbox. That por-
tion of the particles could be permanently confined to the
initial hinge due to a mechanism similar to Wannier-Stark
localization. However, the majority of the particles are still
traveling into the connecting hinges, as shown in Figs. 11(c3)
and 11(d3).

In cold-atom experiments, the density profiles are usually
detected by taking a certain projection plane, where the inte-
grated (column-averaged) densities are observed. To this end,
we point out that the hinge dynamics can be confirmed by
observing the density profiles in two perpendicular planes. A
schematic plot is given in Fig. 11(b), corresponding to the
dynamics along the hinge x = y ∼ 1. The density profile taken
at x-y plane (i.e., the “top” view) would show a localized
distribution at the corner, verifying the particles only locate
at x = y ∼ 1. Meanwhile, the profile at x-z plane (i.e., “side”
view) indicates the movement and spreading along z. In a
more general situation, i.e., at long-time limit with all six
hinges populated as in Fig. 9, additional image projection
planes could be exploited. We also mention that a simulta-
neous implementation of multiple imaging planes has been
applied in experiments [49,50].

C. Detection of Floquet Weyl points

Weyl physics has been explored in recent cold-atom exper-
iments and theoretical proposals [46,49,50,62,63], and also
extensively in solid-state systems [43]. Here, we discuss a
scheme closely related to a recent experiment [11,64] de-
tecting the space-time singularities in anomalous Floquet
insulators. First, the band touching at Weyl points can be ver-
ified using the Stückelberg interferometry [11,65–67]. Such a
method measures the smaller gap for the two bands at E ∼ 0
and π (see Ref. [11] for details). Compared with the exper-
iments for insulators, a difference here is that the two bands
are, overall, always gapless at E = 0. That means if a global
gap is measured, it will prevent us from gaining information
about the gaps or band touching at quasienergy E = π . But,
fortunately, there exists a finite region neighboring to k0 =
π/3(1,−1, 1) where the bands are always gapped at E = 0
for all φ [see Figs. 12(a1) and 12(a2), for example]. Then, a
local gap closure can be measured near k0.

The specific measurement for our case can be per-
formed in the following way. An example for k0 = (π/3 −
0.2)(1,−1, 1) is presented in Fig. 12(b). Let us denote the
quasienergy of the two Floquet bands at k0 with E±(k0) =
±E0. Here, we use the branch cut along π in taking the
logarithm of Floquet eigenvalues e−iE±(k0 ). They have the
same magnitudes and opposite signs due to particle-hole and
inversion symmetry as explained in Sec. II. Then, the local gap
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FIG. 12. Simulation of gap measurements using Stückelberg in-
terferometry. (a1), (a2) Contours for quasienergy gap at E = 0, for
φ = π/8 and π/3, respectively. (b) The gaps at E ∼ 0 and E ∼ π ,
and the measured gap which takes the smaller one of the two.

around E ∼ 0 is 	(0) ≡ 2E0, while the other gap around the
Floquet Brillouin zone boundary E ∼ π is 	(π ) ≡ 2π − 2E0.
Therefore, 	(0) = 	(π ) can only occur at 0, π mod 2π . In ex-
periments, one can start from the high-frequency limit (φ →
0) where the bandwidth is small compared to 2π and therefore
the measured gap always corresponds to 	(0). Slowing down
the driving, the gap 	(π ) shrinks while the other gap 	(0)

expands. At some point, the two gaps coincide with their
magnitudes, as shown in Fig. 12(b). Since it is always the
smaller one of 	(0) and 	(π ) that will show up in experimental
measurement, one will observe a cusp shape of the measured
gap, i.e., near φ ≈ 0.41 in Fig. 12(b). One could then imply
from the occurrence of the cusp that for φ > 0.41, the experi-
mental data start to reveal 	(π ), whose vanishing at φ ≈ 0.87
shows the existence of the Weyl point around E ∼ π . Similar
measurements can be performed for k slightly deviating from
k0, which will show that at φ = 0.87, 	(π ) remains finite,
proving that the band closure around E ∼ π is a point contact.
When the designated φ is slowly approached, one can perform
a measurement of the gap at a certain k. A shortcut for our
system is that focusing on quasimomenta along the diagonal
k0 = k0(1,−1, 1) is sufficient to determine the Weyl point, as
discussed in Sec. III.

With the Weyl points determined, one could further ap-
ply band tomography [68,69] method for momentum states
surrounding a certain Weyl point in order to determine its
charge. Note that one does not need the eigenstate informa-
tion throughout the whole Brillouin zone as the two bands
are gapless in certain regions, except for just an arbitrar-
ily small surface wrapping a Weyl point k(Weyl) determined
previously. As shown before, near the Weyl points in our
model, there exists a finite region where the two bands are

FIG. 13. The Berry curvatures for the surfaces wrapping a Weyl
point. Adding the net Berry curvatures up we have 2π .

fully gapped in both E ∼ 0 and π , which allows for popu-
lating eigenstates with bosons at a certain band [11,69]. As
an example, in Fig. 13(a) we illustrate the surfaces formed
by six faces qx,y,z = ±0.5 of a cube, where q = k − k(Weyl),
with k(Weyl) ≈ 0.955 × (1,−1, 1) for φ = π/3, as in Fig. 2.
From the full information of the Floquet eigenstates |un,k〉
given by Eq. (5), the Berry curvature penetrating out of
a plane normal to the unit vector eμ can be computed as
�μ(k) = ±i

∑
νρ εμνρ (〈∂kν

un,k|∂kρ
un,k〉), where εμνρ is the

Levi-Civita symbol, and ± sign denotes that the unit vector
penetrating out of the cube is along the ±eμ directions. Fig-
ure 13 shows momentum-resolved Berry curvatures in each
wrapping surface and their net fluxes

∫
surf dk �μ(k) in that

plane.

VI. CONCLUSION

In this paper, we have shown that three-dimensional pe-
riodically driven lattice systems can experience a complete
reconstruction of its eigenstates with drastically different fea-
tures, when subjected to open boundary conditions. This
corresponds to a chiral second-order Floquet skin effect. An
intuitive understanding of this effect was given by considering
the system at a fine-tuned point of the periodic driving, where
the bulk motion can only take place forwards or backwards
along a single diagonal direction. As a consequence, for open
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boundary conditions, the particle is reflected back and forth
between hinge-sharing surface planes, indicating a combina-
tion of counterpropagating original bulk eigenstates carrying
opposite group velocity into new chiral Floquet states associ-
ated with the hinge. Thus, the original bulk motion becomes
neutralized, while the new group velocities are associated
with a Goos-Hänchen shift during boundary reflections, which
are most significant close to hinges where the particles are
reflected more frequently.

This effect offers an alternative mechanism to generate
hinge modes in addition to the more well-understood cases
such as (Floquet) higher-order topological phases. The ro-
bustness of the chiral hinge modes here is more relevant
to the special dispersion characteristic of Floquet systems,
which allows for all eigenstates to be localized in a quasi-
one-dimensional region close to fine-tuned point, while not
necessarily require a bulk gap. While we briefly discuss in
Appendix D a topological quantity specific to the fine-tuned
point φ = π/2, it will be an interesting future direction to
explore whether such chiral hinge modes would have a stable
and rigorous topological nature. The previous analysis [70]
has shown that the requirement of bulk quasienergy gap be-
comes less important to characterize topologically protected
chiral modes [i.e., Figs. 4(a) (ii) in [70]]. While weak disorder
could mix different momentum states and destroy the hinge
modes, it will be interesting to see whether a set of more
robust hinge modes would emerge in the strongly disordered
regime where all modes are localized, and to check the pos-
sible crossover or transitions when one increases the disorder
strengths.

Our current approach and discussions would also be useful
for considering observable effects in experiments, similar to
the case of Weyl semimetals where surface defects and disor-
der would partly destroy the Fermi arc but the chiral transport
will be partially preserved therein [71].

It is noteworthy that even modes close to bulk center suffer
from a complete reconstruction by open boundaries, hosting
very different group velocity in the thermodynamic limit.
Such an effect resembles the accumulation of boundary modes
in systems described by a non-Hermitian Hamiltonian. Yet
different from this non-Hermitian skin effect, in our system
we can have at most one state per lattice site on average,
as Floquet states are orthogonal to each other. Thus, in our
system the accumulation corresponds to the emergence of
hinge-bound modes at increasing distance from the hinge.
Another interesting aspect is the competition or interplay be-
tween the hinge modes and the emergence of robust Weyl
points in our system, so the hinge states can coexist with the
Fermi-arc surface states. The implementation of the model
featuring both the second-order Floquet skin effect and the
Weyl physics is straightforward with ultracold atoms in opti-
cal superlattices.
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APPENDIX A: EVOLUTION OPERATOR AND
QUASIENERGIES ALONG THE DIAGONAL

1. Evolution operator

In the bulk the stroboscopic evolution operator UF is gener-
ally given by Eqs. (3) and (4) in the main text. Let us consider
the operator UF for wave vectors k along the cubic diagonal
direction d = (1,−1, 1), for which

k = k0d and, thus, |k| =
√

3|k0|. (A1)

In that case Eqs. (3) and (4) simplify to

UF = [U (k0)U (−k0)]3, (A2)

where

U (k0) = τ0 cos φ − iτk0 sin φ, (A3)

with τk0 = τ1 cos k0 + τ2 sin k0, where τ1,2,3 are Pauli matri-
ces for the sublattice freedom, τ0 being a unit 2 × 2 matrix.
Explicitly one, thus, has

U (k0)U (−k0) = [cos2 φ − sin2 φ cos(2k0)]τ0 + ib, (A4)

with

b = sin2 φ sin (2k0)τ3 − sin(2φ) cos k0τ1. (A5)

2. Quasienergies

The evolution operator UF = e−iHF defines the quasiener-
gies representing the eigenvalues of the of the Floquet
Hamiltonian HF , which describes the stroboscopic time evolu-
tion in multiples of the driving period T = 1. Using Eqs. (A2)
and (A4) for the evolution operator, one arrives at the follow-
ing equation for the quasienergies Ek:

cos (Ek/3) = cos2 φ − sin2 φ cos (2k0). (A6)

This provides the dispersion (modulo 2π ) along the diagonal
kx = −ky = kz = k0:

Ek0d,γ = 3γ arccos[cos2 φ − sin2 φ cos(2k0)],

with γ = ±1. (A7)

In particular, quasienergies Ek0d,γ = π (modulo 2π ) corre-
spond to

cos2 φ − sin2 φ cos (2k0) = 1/2, (A8)

and thus

cos (2k0) = 1/2 − sin2 φ

sin2 φ
, (A9)

giving (modulo π )

k0 = ±(1/2) arccos[(1/2 − sin2 φ)/ sin2 φ]. (A10)

At the fine-tuned point (φ = π/2) the condition (A8) reduces
to

cos (2k0) = −1/2, giving k0 = ±π/3. (A11)

On the other hand, at φ = π/6 one has sin2 φ = 1/4, so that

cos (2k0) = 1, giving k0 = 0. (A12)

In this way, two band-touching points are formed at
quasienergy π for π/6 < φ < π/2, as well as for
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π/2 < φ < 5π/6 (beyond the fine-tuning point at
φ = π/2). By taking φ < π/6 or φ > 5π/6, Eq. (A8)
can no longer be fulfilled, so a band gap is formed at
quasienergy π .

APPENDIX B: STROBOSCOPIC HINGE MOTION
AT FINE TUNING

In this Appendix we give a detailed description of the
stroboscopic real-space dynamics of the system at fine tuning,
φ = π/2, giving rise to chiral hinge-bound Floquet modes.
We will consider the hinge that is shared by the two surface
planes oriented in the −x and −y directions, which is parallel
to the z axis. The projection of the particle’s trajectory in the
xy plane is illustrated in Figs. 5 and 6. A particle of sublattice
s = +1,−1 ≡ A, B is translated by 2sd during each driving
cycle, provided x + 2s � 1 and y − 2s � 1 to ensure it does
not hit any of the boundary plane. In that case the state vector
|s, x, y, z〉 transforms according to the following rule after a
single driving period:

UF |s, x, y, z〉 = −|s, x + 2s, y − 2s, z + 2s〉. (B1)

The particle thus propagates with a stroboscopic velocity
v = 2s(1,−1, 1) in opposite directions s = ±1 for different
sublattices A and B.

Suppose initially the particle occupies a site of the sub-
lattice B at the boundary y = 1 situated M sites away from
the hinge (x = M + 1) with odd M + z, so that s = B = −1.
The corresponding initial state vector is |s, M + 1, 1, z〉 ≡
|B, M + 1, 1, z〉. The subsequent stroboscopic trajectory pro-
jected to the xy plane is shown in Fig. 5 for M = 4 and in
Fig. 6 for M = 5. Generally, it takes (2M + 1) driving periods
for the system to return to its initial state |M + 1, 1, z〉. To see
this, consider the stroboscopic evolution of the particle with
an even M > 2 and odd z. The stroboscopic motion of the
particle then splits into four bulk and four boundary segments
illustrated in Fig. 5 for M = 4.

During the first M/2 driving periods the particle undergoes
the bulk ballistic motion along the sites of the B sublattice, and
the state vector transforms as |B, M + 1, 1, z〉 → |B, 1, M +
1, z − M〉. Subsequently, the particle is reflected from the
plane x = 1 to a site of the sublattice A situated closer to the
hinge, |B, 1, M + 1, z − M〉 → |A, 2, M − 1, z + 2 − M〉, as
shown in Fig. 1(c) of the main text. During the next M/2 − 1
driving periods the particle propagates ballistically along the
sites of the A sublattices, giving |A, 2, M − 1, z + 2 − M〉 →
|A, M, 1, z〉. The subsequent reflection from the plane y = 1
brings the particle to a site of the B sublattice situated fur-
ther away to from the hinge |A, M, 1, z〉 → |B, M, 2, z − 2〉.
The evolution takes place in the similar way during the final
four segments. Explicitly, the full stroboscopic dynamics is
given by

(UF )M/2|B, M + 1, 1, z〉 = (−1)M/2|B, 1, M + 1, z − M〉,
(B2)

UF |B, 1, M + 1, z − M〉 = − i|A, 2, M − 1, z + 2 − M〉,
(B3)

(UF )M/2−1(−i)|A, 2, M − 1, z + 2 − M〉
= i(−1)M/2|A, M, 1, z〉, (B4)

UF i|A, M, 1, z〉 = |B, M, 2, z − 2〉, (B5)

(UF )M/2−1|B, M, 2, z − 2〉 = − (−1)M/2|B, 2, M, z − M〉,
(B6)

UF (−1)|B, 2, M, z − M〉 = i|A, 1, M, z − M〉, (B7)

(UF )M/2−1i|A, 1, M, z − M〉
= (−i)(−1)M/2|A, M − 1, 2, z − 2〉, (B8)

UF (−i)|A, M − 1, 2, z − 2〉 = −|B, M + 1, 1, z − 2〉. (B9)

In this way, after (2M + 1) driving periods the particle returns
back to the initial position (M + 1, 1) in the xy plane and is
shifted by 2 lattice units to an equivalent point of the sublattice
B in the direction opposite to the z axis. The same holds for
the initial state vector |B, M + 1, 1, z〉 characterized by an odd
M and even z (see Fig. 6 for M = 5), as well as for a particle
situated closer to the hinge (0 � M � 3) where the reflections
can take place simultaneously from both planes x = 1 and y =
1, as illustrated in Fig. 1(d) in the main text. Thus, one can
write for any distance M � 0 from the hinge

(UF )2M+1|B, M + 1, 1, z〉 = −|B, M + 1, 1, z − 2〉. (B10)

This means the particle propagates along the hinge in
the −z direction with the stroboscopic velocity equal to
−2/(2M + 1). The relations analogous to Eq. (B10) hold for
all 2M + 1 states of the stroboscopic sequence featured in
Eqs. (B3)–(B9).

The origin of such chiral hinge states can be explained
as follows. The particle in the sublattice B is reflected to a
site of the A sublattice situated closer to the hinge, whereas
the particle in the sublattice A is reflected to a site of the
sublattice B situated further away from the hinge, as one can
see in Figs. 5 and 6, as well as in Eqs. (B3), (B5), (B7), and
(B9). Consequently, the number of B sites visited over all
2M + 1 driving periods (M + 1) exceeds the corresponding
number of A sites (M). The four reflections do not yield any
total shift of the particle in the z direction. On the other hand,
the ballistic motion between sites the same sublattice B (A) is
accompanied by a shift by 2 lattice sites in the z (−z) direction
for each driving period. This leads to the overall shift of the
particle to an equivalent site in the −z direction is due to the
difference in the number of the visited B and A sites after
2M + 1 driving periods.

APPENDIX C: NON-HERMITIAN HAMILTONIAN
CORRESPONDING TO STROBOSCOPIC OPERATOR

Recently, it was suggested [72] to associate a non-
Hermitian Hamiltonian HNH(k) to the momentum-space
stroboscopic evolution operator iUF (k). Let us consider such
a non-Hermitian Hamiltonian for our 3D periodically driven
lattice

HNH = iUF . (C1)
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For the fine-tuned driving (φ = π/2) the bulk stroboscopic
evolution operator corresponds to a non-Hermitian Hamilto-
nian describing a unidirectional transfer between the lattice
sites along the diagonal d = (1,−1, 1) and in the opposite
direction −d for the sublattices A and B, respectively:

Hbulk
NH = − i

∑
rA

|A, rA + 2d〉〈A, rA|

− i
∑

rB

|B, rB − 2d, 〉〈B, rB|. (C2)

The open boundary conditions for the hinge corresponding
to x � 1 and y � 1 are obtained by imposing a constraint
on the state vectors entering the real-space non-Hermitian
Hamiltonian (C2):

|s, rs〉 = 0 for rs · ex,y � 0, with s = A, B. (C3)

The bulk non-Hermitian Hamiltonian (C2) supplied with the
open boundary conditions (C3) describes a unidirectional
coupling between unconnected linear chain of the A or B
sites terminating at the hinge planes. The eigenstates of each
linear chain represent non-Hermitian skin modes which are
localized at one end of the chain depending on the direction
of asymmetric hopping [36,37]. In the present situation such
skin modes would be trivially localized on different planes
of the hinge for the chains comprising different sublattice
sites A or B, and no chiral motion is obtained along the
hinge.

Yet, the open boundary conditions (C3) are not sufficient
to properly represent the boundary behavior of a particle in
our periodically driven lattice. In fact, bulk non-Hermitian
Hamiltonian (C2) supplied with the boundary conditions (C3)
is no longer a unitary operator. Thus, one can not associate
such a non-Hermitian operator with the evolution operator,
in contradiction with Eq. (C1). The unitarity is restored by
adding to Hbulk

NH extra terms [in addition to the conditions
(C3)] to include effects of the chiral backward reflection at
the hinge planes to a neighboring linear chain composed of
the sites of another sublattice. These terms are described by
Eqs. (B3), (B5), (B7), and (B9), and correspond to the dashed
lines in Figs. 5 and 6. The chiral reflection appears due to the
micromotion during the driving period involving six steps [see
Fig. 1(b)], and is a characteristic feature of the periodically
driven 3D lattice. As discussed in the previous Appendix B,
the backreflection leads to the chiral motion along the
hinge.

APPENDIX D: TENTATIVE DISCUSSIONS
ON TOPOLOGICAL ORIGINS

An interesting question is whether the robust chiral hinge
states are a consequence of topological properties of the
driven system. However, as we see from column (2) of Fig. 2,
the quasienergies of hinge states are fully mixed with the bulk

spectrum, and therefore no traditional topological band theo-
ries for gapped or semimetallic systems apply. Here, we apply
an approach similar to that used in Refs. [1,42] for computing
topological invariant at a fine-tuned parameter point, where
eigenstates are analytically obtainable, and a topological in-
variant based on eigenstate projections can be calculated.

In Sec. IV A we have obtained Eq. (15) describing the
evolution over 2M + 1 driving periods of the Mth hinge state
|M, kz, p〉 at the fine-tuned point. Using this equation one can
define the the quasienergy winding number [1] for the Mth
hinge state via the Floquet evolution operator over the 2M + 1
driving periods:

WM = 1

2π i

∫ π

0
dkzU

−1
kz,2M+1∂kzUkz,2M+1 = 1, (D1)

where

Ukz,2M+1 = 〈M, kz, p|(UF )2M+1|M, kz, p〉 = −e2ikz , (D2)

with p = 0, 1, . . . , 2M. In Eq. (D1) the integration over kz

extends over one Brillouin zone of width π , as the distance
between two nonequivalent lattice sites equals to 2 in the z
direction. A similar procedure can be applied to the opposite
hinge at (x, y) = (L, L), where the hinge modes shown in blue
in column (2) of Fig. 2 are characterized by the opposite group
velocity and thus the winding number is opposite WM = −1.

The rigorous quantization of the topological invariant WM

is associated with the fine tuning φ = π/2. However, the
spatial separation between hinge modes of opposite chirality
allows to preserve their chiral character also away from the
fine-tuning point φ = π/2, as one can see in column (2) of
Fig. 2. Thus, the formation of bulk states via the mixing of
hinge modes of opposite chirality happens mostly in the center
of the system, where hinge modes corresponding to large M
and small chiral velocities lie close by to their counterpropa-
gating partners associated with the opposite hinge. In turn, the
states with the largest chiral velocity, which are situated close
to the hinge and far away from counterpropagating modes of
the opposite hinge, are much less affected by a small detuning.

In this way, tuning away from φ = π/2 we find a crossover
(rather than a topological transition) in which the chiral hinge
modes are gradually destroyed, as can be observed in the
real-space plots in columns (2) and (3) of Fig. 2. Note that
already a small deviation from the fine-tuned point φ = π/2
destroys the chiral hinge states in a narrow region near kz = 0
and E = π , as can be seen from the spectrum shown for
φ = π/3 in column (2) of Fig. 2. In this spectral surface
Fermi-arc states are formed, which equally provide definite
chiral transport, yet around the surfaces rather than the hinges.
Thus, a fraction of the chiral hinge states is transformed into
Fermi-arc surface states in the vicinity of the Weyl points. The
latter states extend to a larger and larger spectral area as the
detuning increases.
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Lett. 111, 125301 (2013).
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