
Viktor Novičenko and Irmantas Ratas

(Received 16 September 2019; published 27 September 2019)

DOI: 10.1103/PhysRevE.100.039903

We would like to point out indexing errors in Eqs. (26), (27), and (31) of our paper. The correct expressions should be

\[
\frac{\partial V_0}{\partial \tau_i}(t) = \frac{T}{2\pi} \sum_{j,k=1}^{N} a_{jk} [s_k(t) - s_j(t)] \left[\dot{s}_k(t) \frac{\partial \psi_{i,\text{sync}}^*}{\partial \tau_i} - \dot{s}_j(t) \frac{\partial \psi_{j,\text{sync}}^*}{\partial \tau_i} \right],
\]

(26)

\[
\frac{\partial V_0}{\partial \tau_i}(t) = -\frac{KC}{\eta \varepsilon T} \sum_{j,k=1}^{N} a_{jk} [s_k(t) - s_j(t)] [\dot{s}_k(t) (L^\dagger)_{ki} - \dot{s}_j(t) (L^\dagger)_{ji}],
\]

(27)

and

\[
x_i = f(x_i, u_i) + \varepsilon \sum_{j=1}^{N} a_{ij} G_{ij}(x_j, x_i),
\]

(31a)

\[
\dot{\tau}_i = -\beta q_i,
\]

(31b)

\[
\dot{q}_i = -\nu q_i - \text{sgn}(KC) \sum_{j,k=1}^{N} a_{jk} [s_k(t) - s_j(t)] [(s_k - p_k)(L^\dagger)_{ki} - (s_j - p_j)(L^\dagger)_{ji}],
\]

(31c)

\[
\dot{p}_i = \gamma (s_i - p_i),
\]

(31d)

\[
s_i(t) = g(x_i(t)),
\]

(31e)

\[
u u_i(t) = K [s_i(t) - \tau_i(t)] - s_i(t),
\]

(31f)

We also like to note that, in Sec. III A, the constant \(\beta\) of a gradient descent method used for the case of Stuart-Landau oscillators, given five lines from the bottom on the left hand side of p. 7, should be \(\beta = 2 \times 10^{-5}\), and in Sec. III B, for the case of FitzHugh-Nagumo oscillators, given four lines from the top on the right hand side of p. 8, it should be \(\beta = 3 \times 10^{-7}\).

We emphasize that these errors were misprints and do not affect the main results of the article.