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Phase reduction of a limit cycle oscillator perturbed by a strong
amplitude-modulated high-frequency force
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The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-
frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective
phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then
an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower)
than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived
an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The
theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.
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I. INTRODUCTION

Self-sustained oscillations are of great interest for the phys-
ical, chemical, and biological sciences [1–4]. The oscillations
appear in nonlinear dissipative systems and are typically
modeled by limit cycle oscillators. The phase reduction
method [1,2] provides a fundamental theoretical technique
to approximate high-dimensional dynamics of limit cycle
oscillators with a single phase variable that characterizes
timing of oscillation. This method has been widely and
successfully applied to weakly coupled oscillators as well
as an oscillator subjected to a weak external force. Various
waveform optimization problems have been solved in the
framework of this approach to improve entrainment properties
of forced spiking neurons [5].

In recent years, several extensions of the phase reduction
theory have been elaborated. The theory has been successfully
adapted to stochastic [6], delay-induced [7], and collective [8]
oscillators. Despite the fact that the conventional phase reduc-
tion theory deals only with weak perturbations, Kurebayashi
et al. [9] have recently demonstrated that this fundamental
limitation can be overcome in some cases. They extended
the phase reduction method for a special class of strong
perturbations that can be decomposed into a strong slowly
varying component and remaining weak fluctuations.

In this paper, we extend the phase reduction theory for
another class of strong perturbations. We consider a limit
cycle oscillator driven by a strong amplitude-modulated high-
frequency (AMHF) force [e.g., proportional to sin(�t) sin(ωt)]
with a carrier frequency ω considerably greater than the natural
frequency �0 of the oscillator and an envelope frequency
� comparable to �0. We derive an equation for the phase
dynamics using a combination of an averaging method [10,11]
and the conventional phase reduction approach.

The AMHF perturbations are widely used in neuroscience
for controlling synchronization processes in neuronal net-
works [12,13]. An innovative therapeutic procedure clinically
approved for the treatment of Parkinson’s disease, essential
tremor and dystonia is a deep brain stimulation [14], in which
electrical pulses are applied to inhibit pathological synchrony
among the neurons [15]. One of the stimulation techniques,
referred to as a coordinated reset neuromodulation [13], desyn-
chronizes a neural population via brief, high-frequency pulse

trains, which are periodically delivered at different sites of the
population (subpopulations) with shifted phases. The need for
the mild stimulation protocols raises a challenging problem:
how to reset a phase of the subpopulation with the least
invasiveness. Regarding this question, we formulate an AMHF
waveform optimization problem to attain an entrainment of
a limit cycle oscillator with minimal power. We solve the
problem by employing our developed phase reduction method
and the Pontryagin maximum principle [16].

The paper is organized as follows. In Sec. II we present our
phase reduction theory and demonstrate its validity using two
specific examples, namely, the Stuart-Landau oscillator and the
Morris-Lecar [17] model neuron. Section III is devoted to the
waveform optimization problem. To numerically demonstrate
this theory we use the FitzHugh-Nagumo [18] model neuron.
A summary is presented in Sec. IV.

II. PHASE REDUCTION THEORY

Let us consider an unperturbed dynamical system ẋ = f(x)
with x(t) ∈ Rn and f : Rn → Rn and assume that it has a stable
T0-periodic limit cycle solution x(t) = ξ (t) = ξ (t + T0). We
seek to develop a phase reduction theory for the oscillator
driven by a strong AMHF perturbation

ẋ = f(x) + Kψ(�t)ϕ(ωt), (1)

where K = diag[K1,K2, . . . ,Kn] is a diagonal coupling ma-
trix, ψ(�t) = [ψ1(�t), . . . ,ψn(�t)]T is an n-dimensional
envelope vector, and ϕ(ωt) is a scalar high-frequency (HF)
carrier signal. Both functions ψ(s) and ϕ(s) are 2π -periodic
with respect to s. We analyze an entrainment of the oscillator
to the envelope frequency � assuming that it is close to the
frequency �0 = 2π/T0 of the limit cycle, while ω � �0.
The ratio ω/� is assumed to be an integer number so that
the product ψ(�t)ϕ(ωt) is a periodic function with the same
period T = 2π/� as the envelope. For the HF function ϕ(ωt),
we require the zero average,

∫ 2π

0 ϕ(s)ds = 0. In terms of
neurostimulation, this constraint represents a charge-balanced
requirement, which is clinically mandatory to avoid tissue
damage [12]. In addition, we assume without loss of generality
that the maximum of the function ϕ(s) is equal to 1 and the
minimum is not bellow −1, moreover each component ψj (s)
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is in the interval [−1,1] and at least one time during the period
reaches one of the boundary.

We are interested in the case when the components of
the coupling matrix K are not small in comparison to the
corresponding components of the vector field f(x) so that the
conventional phase reduction approach does not apply. Here
we develop a modified approach that allows us to derive a
phase equation for the system (1) in the limit of high frequency
ω → ∞ even when the perturbation is large. Considering this
limit it is convenient to scale the coupling matrix as K = ωA
with the components of the matrix A = diag[A1,A2,...,An]
being independent of ω, i.e., we replace the set of independent
parameters (ω,K) by the set of independent parameters (ω,A).
Due to the one-to-one relation between the above parameter
spaces, the solution found in the space of the parameters (ω,A)
can be uniquely transformed into the original space of the
parameters (ω,K). A motivation for such a transformation of
the parameters can be found in the Appendix of Ref. [19]. Let
us introduce a particular antiderivative of the HF function as

�(s) = �1(s) − 〈�1〉, (2)

where �1(s) = ∫ s

0 ϕ(s ′)ds ′ and the angle brackets 〈�1〉 =
(1/2π )

∫ 2π

0 �1(s)ds denote the averaging of a function over
its period. The function �(s) has the properties d�(s)/ds =
ϕ(s), �(s + 2π ) = �(s), and 〈�〉 = 0. Using this function,
we change the variable y(t) = x(t) − �(ωt)Aψ(�t) of the
system (1) and rewrite it as

ẏ = f(y + �(ωt)Aψ(�t)) − �(ωt)A
d

dt
ψ(�t). (3)

By introducing an envelope phase variable α = �t and the
“fast” time variable τ = ωt , system (3) can be transformed
into the standard form of equations as typically used by the
method of averaging [10]:

ω
dy
dτ

= f(y + �(τ )Aψ(α)) − �(τ )A�
dψ(α)

dα
, (4a)

ω
dα

dτ
= �. (4b)

Due to the large factor ω in the left-hand side (l.h.s.) of Eqs. (4),
the variables y and α vary slowly while the periodic function
�(τ ) in the right-hand side (r.h.s.) oscillates fast. According
to the method of averaging [10], an approximate solution of
system (4) can be obtained by averaging the r.h.s. of the system
over fast oscillations. Specifically, let us denote the variables
of the averaged system as ȳ and ᾱ. They satisfy the equations

ω
dȳ
dτ

= 〈f(ȳ + �(s)Aψ(ᾱ))〉, (5a)

ω
dᾱ

dτ
= �, (5b)

where the angle brackets denote the averaging over the variable
s. Note that in general the averaged Eqs. (5) approximate so-
lutions of the system (4) with accuracy y(τ ) = ȳ(τ ) + O(ω−1)
on a time interval of the order O(ω) [10]. However, here we are
interested in stable periodic solutions of the system (5). Then
the above approximation is valid on the infinite time interval
(cf. [11], theorem 9.6.).

Further simplification can be made if we treat the com-
ponents of the vector A as small parameters and expand the
function in the r.h.s. of Eq. (5a) in Taylor series

f(ȳ + �(s)Aψ(ᾱ))

= f(ȳ) + �(s)
n∑

i=1

∂f(ȳ)

∂ȳi

Aiψi(ᾱ)

+ �2(s)

2

n∑
i,j=1

∂2f(ȳ)

∂ȳi∂ȳj

AiAjψi(ᾱ)ψj (ᾱ) + O(A3). (6)

Despite the fact that here we treat Ai as small parameters,
the product K = ωA can be large for large ω so that the
perturbation in Eq. (1) is not small. Using Eq. (6) we can
perform explicitly the averaging in Eq. (5a). Then omitting the
small term O(A3) and returning to the original time scale, we
get

˙̄y(t) = f(ȳ(t)) + 〈�2〉
2

n∑
i,j=1

∂2f(ȳ(t))

∂ȳi∂ȳj

AiAjψi(�t)ψj (�t).

(7)

Since the second term in the r.h.s. is small [its order is
O(A2)], we can treat this system by the conventional phase
reduction method. The unperturbed Eq. (7) as well as the
original Eq. (1) has the stable limit cycle solution ȳ(t) = ξ (t).
The usual infinitesimal phase response curve (PRC) z(t) is
defined as a T0-periodic solution of the adjoint equation
ż(t) = −[J (t)]T z(t), where J (t) = Df(ξ (t)) is the Jacobian
of the free system evaluated on the limit cycle. As a result,
we can write an equation for the phase ϑ(t) of the system (7)
as

ϑ̇(t) = 1 + 〈�2〉
2

zT (ϑ)
n∑

i,j=1

∂2f(ξ (ϑ))
∂ξi∂ξj

AiAjψi(�t)ψj (�t).

(8)

In neuroscience, the coupling matrix has typically only one
nonzero component, K = diag[K1,0, . . . ,0]. Then the Eq. (8)
simplifies to

ϑ̇(t) = 1 + 〈�2〉
2

A2zeff(ϑ)ψ2(�t). (9)

Here we skipped the subindexes in A1 and ψ1 and introduced
an effective PRC as

zeff(ϑ) = zT (ϑ)
∂2f(ξ (ϑ))

∂ξ 2
1

. (10)

From Eq. (9) we can make two important conclusions: (i) the
sign of the envelope ψ does not affect the phase of the system
and (ii) if zeff(ϑ) is positive (negative) on the whole interval
[0,T0] then the entrainment of the oscillator is possible only
for � > �0 (� < �0).

Below we present two specific examples to demonstrate the
validity of our phase reduction theory.

A. Example I: A Stuart-Landau oscillator

We start from a simple example of a Stuart-
Landau (SL) oscillator driven by the AMHF
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force:

ẋ1 = x1
[
1 − x2

1 − x2
2

] − x2 + Kψ(�t)ϕ(ωt), (11a)

ẋ2 = x2
[
1 − x2

1 − x2
2

] + x1. (11b)

Here the limit cycle and the conventional PRC of the free
system can be found analytically: ξ (t) = [cos(t), sin(t)]T

and z(t) = [− sin(t), cos(t)]T . Then the effective PRC is
zeff(ϑ) = 2 sin(2ϑ). We choose a particular waveform with the
harmonic HF function ϕ(ωt) = cos(ωt) and the square wave
envelope ψ(�t) = H (sin(2�t)), where H (·) is a Heaviside
step function.

To derive an analytical expression for an entrainment
threshold, we introduce a new phase variable χ (t) = ϑ(t) −
t �

�0
and rewrite Eq. (9) in the form

χ̇ = −� + 〈�2〉
2

A2zeff

(
χ + t

�

�0

)
ψ2(�t), (12)

where

� = �/�0 − 1 (13)

is the frequency mismatch. The r.h.s. of Eq. (12) is a T -periodic
function, where T = 2π/� is the envelope period. Assuming
that the frequency mismatch � is a small parameter of the
same order O(A2) as the second term in Eq. (12), we can treat
this system by the method of averaging. Denoting the variable
of the averaged system as χ̄ , we get an equation

˙̄χ = −� + 〈�2〉
2

A2G(χ̄ ), (14)

where G(χ̄) is a T0-periodic function defined as

G(χ̄ ) = 1

T

∫ T

0
zeff

(
χ̄ + s

�

�0

)
ψ2(�s)ds

= 1

T0

∫ T0

0
zeff(χ̄ + s)ψ2(�0s)ds. (15)

Equation (14) approximates the solution of Eq. (12) with the
accuracy O(A2), χ̄(t) = χ (t) + O(A2). The entrainment of
the oscillator to the envelope frequency � takes place when
the system (14) possesses a stable fixed point. The maximal
and minimal values of the function G(χ̄ ) define the threshold
amplitude A = Ath at which the entrainment appearers. For
the given waveform, we have 〈�2〉 = 1/2, zeff(ϑ) = 2 sin(2ϑ)
and ψ(t) = H (sin(2t)), so that the maximal and minimal
values of the function G(χ̄) are: max[G(χ̄)] = G(0) = 2/π

and min[G(χ̄)] = G(π/2) = −2/π . Inserting these values
into Eq. (14) and equating the r.h.s to zero, we get the threshold
amplitude

Ath =
√

2π |�|. (16)

As is seen from Fig. 1, the Arnold tongue computed numeri-
cally from the averaged Eq. (7) and original Eq. (11) is in good
agreement with the analytical result (16).

B. Example II: A Morris-Lecar model neuron

Now we apply our phase reduction theory to a
Morris-Lecar [17] model neuron subjected to the AMHF

FIG. 1. (Color online) The Arnold tongue of the SL system (11)
for ω/� = 100. Straight lines represent analytical Eq. (16), black
circles and red crosses show the numerical results derived from the
averaged Eq. (7) and original Eq. (11), respectively.

force:

CV̇ = −gCam∞(V )(V − VCa) − gKw(V − VK )

− gl(V − Vl) + I + Kψ(�t)ϕ(ωt), (17a)

ẇ = φ[w∞(V ) − w]/τw(V ), (17b)

where m∞(V ) = 0.5{1 + tanh[(V − V1)/V2]}, w∞(V ) =
0.5{1 + tanh[(V − V3)/V4]}, and τw(V ) = 1/ cosh[(V −
V3)/(2V4)]. The parameter values are: C = 5.0 μF/cm2,
gCa = 4.0 μ S/cm2, gK = 8.0 μ S/cm2, gl = 2.0 μS/cm2,
VCa = 120 mV,VK = −80 mV, Vl = −60 mV, V1 =
−1.2 mV, V2 = 18.0 mV, V3 = 12 mV,V4 = 17.4 mV,
φ = 1/15 ms−1, and I = 40.0 μA/cm2.

For the given values of the parameters, the free neuron fires
with the period T0 ≈ 86.27 ms. The numerically computed
effective PRC is depicted in Fig. 2. We see that it is positive
almost on the whole interval and there are some regions of
ϑ where this function has very small negative values. This
means that the entrainment of the neuron is effective only
for the positive frequency mismatch � > 0. We choose the
HF function in the form of harmonic signal ϕ = cos(ωt) with
ω = 100� and verify our theory for two different waveforms
of the envelope: (i) the harmonic wave envelope ψ(�t) =
(1 − cos(�t))/2 and (ii) the square wave envelope ψ(�t)) =
H (sin(�t)), which a half of the period is equal to 1 and another
half is equal to 0.

For the given envelopes, we numerically estimated the
function G(χ̄) defined by Eq. (15) and found that it is
everywhere positive. Therefore, the entrainment is impossible
for � < 0. The theoretical value of the threshold amplitude can
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FIG. 2. (Color online) The effective phase response curve for
the Morris-Lecar neuron model (17). The inset shows an enlarged
segment of the effective PRC, where it has negative values.
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FIG. 3. (Color online) The Arnold tongues for the Morris-Lecar
neuron (17). The blue color represents the harmonic wave envelope
ψ(�t) = (1 − cos(�t))/2, while the red color corresponds to the
square wave envelope ψ(�t) = H (sin(�t)). The strait lines show
the theoretical values defined by Eqs. (18) and (19), circles show the
numerical results obtained from averaged system (7) and the crosses
represent the results of direct numerical simulation of the original
system (17).

be derived from Eq. (14) by replacing G(χ̄ ) with the maximal
value max[G(χ̄)] and equating the right-hand side to zero. For
the harmonic wave envelope we get

A2
th =

{
32.72� when � > 0
∞ when � < 0 . (18)

Similarly, the threshold amplitude for the square wave enve-
lope is given by

A2
th =

{
26.64� when � > 0
∞ when � < 0 . (19)

In Fig. 3, these theoretical values are compared with the results
of numerical simulation of the averaged Eq. (7) and the original
system (17). For both waveforms, our phase reduction theory
predicts correctly the results of direct numerical simulations
of the original system.

In order to demonstrate how the solution of the averaged
system (7) approaches the solution of the original system (17)
with the increase of ω, we fixed the frequency mismatch � =
0.01 and computed the threshold amplitude Ath. The results for
the square wave envelope with the varying carrier frequency
ω are presented in Fig. 4. We see that the results obtained
from the original system (17) converge to the value derived
from the averaged system (7), while the latter approaches the
theoretical value (19) in the limit � → 0.

III. THE AMHF WAVEFORM OPTIMIZATION

The phase Eq. (9) is helpful to solve the waveform
optimization problem. For the fixed frequencies ω and �,
we are seeking to find the optimal waveforms ϕ(ωt) and
ψ(�t), which provide an entrainment of a given oscillator
to the envelope frequency � with minimal power. We assume
that the external force is restricted by some value I0, so that
|Kψ(�t)ϕ(ωt)| � I0 holds for any time. It means that the

FIG. 4. The threshold amplitude as the function of the carrier
frequency for the Morris-Lecar neuron (17). The numerical computa-
tions are performed for the fixed frequency mismatch � = 0.01 using
the square wave envelope ψ(�t) = H (sin(�t)) with the varying
carrier frequency ω. The solid line shows the theoretical value
obtained from Eq. (19), while the dashed line is computed from
the averaged system (7). The crosses represent the results of direct
numerical simulation of the original system (17).

amplitude A cannot exceed the value I0/ω. To solve this
problem, we invoke the Pontryagin maximum principle [16].
Here we present only the main results, while the details are
provided in the Appendix.

Assuming that the envelope ψ(�t) is a slowly vary-
ing function on the HF period 2π/ω, the power P =
(�/2π )

∫ 2π/�

0 [Kψ(�t)ϕ(ωt)]2dt of the perturbation can be
approximated as a product of two factors:

P =
(

ω2

2π

∫ 2π

0
A2ψ2(s)ds

)(
1

2π

∫ 2π

0
ϕ2(s)ds

)
. (20)

We denote the first and the second factor as P� and Pω,
respectively. Since P� depends only on Aψ and Pω depends
only on ϕ, the problems of the Aψ and ϕ waveforms
optimization can be analyzed separately. We show (see the
Appendix) that the optimal HF waveform (which we mark
by an asterisk) is the harmonic function ϕ∗(s) = sin(s + β)
and thus Pω = 1/2. If the harmonic wave is replaced by the
square wave ϕ(s) = sgn(sin(s + β)) then the threshold power
necessary to achieve an entrainment will increase by the factor
1.22.

The optimal waveform of the envelope represents a switch-
ing function with two possible values ψ∗ = 1 (switched on)
and ψ∗ = 0 (switched off). The time intervals where the
perturbation is switched on and off are defined with the help
of two auxiliary functions

M+(u) = 〈H (zeff(ϑ) − u)zeff(ϑ)〉 when � > 0, (21a)

M−(u) = 〈H (u − zeff(ϑ))zeff(ϑ)〉 when � < 0, (21b)

where the angle brackets denote the averaging over ϑ . Both
functions M±(u) are monotonically decreasing functions. The
function M+(u) (M−(u)) is determined only for the positive
(negative) u and turns to zero at the point u+

c = max[zeff(ϑ)]
(u−

c = min[zeff(ϑ)]) [cf. Fig. 5(c)]. Using these functions, we
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FIG. 5. (Color online) Waveform optimization for the FHN neu-
ron (25): (a) the effective PRC, (b) an example of optimal envelope
for � = 0.1, (c) the functions M±(u) defined by Eq. (21), and (d) the
functions N±(u) defined by Eq. (24).

determine a point u0 where

M±(u0) = 2ω2�

〈�2〉I 2
0

(22)

and then define the optimal envelope as

ψ∗(�0ϑ) =
{
H (�) when zeff(ϑ) > u0

H (−�) when zeff(ϑ) < u0
. (23)

The optimal value of the amplitude A is its maximal allowable
value A∗ = I0/ω. Note that the entrainment is possible
only when I0 > Icr = ω[2�/〈�2〉M±(0)]

1/2
. The waveform

A∗ψ∗(�0ϑ) provides an entrainment of the oscillator to
the envelope frequency � with the lowest possible power
P� = I 2

0 N±(u0), where the functions N±(u) are

N+(u) = 〈H (zeff(ϑ) − u)〉 when � > 0, (24a)

N−(u) = 〈H (u − zeff(ϑ))〉 when � < 0. (24b)

For large I0, the optimality of the waveform (23) has a clear
qualitative explanation. Assume that the frequency mismatch
is positive, � > 0. Then for I0 → ∞, the point u0 approaches
the maximum u+

c of the curve zeff(ϑ) and the waveform
A∗ψ∗(�0ϑ) turns into a narrow high pulse located at the point
ϑ where this maximum is reached, i.e., the whole power of the
perturbation is consumed at this point. From Eq. (9) it follows
that such a waveform provides the maximal increase of the
oscillator phase during the period of oscillations.

A. Example: A FitzHugh-Nagumo model neuron

We demonstrate the waveform optimization theory with the
specific example of a FitzHugh-Nagumo (FHN) [18] neuron
driven by the AMHF force:

ẋ1 = x1 − x3
1/3 − x2 + a + Kψ(�t)ϕ(ωt), (25a)

ẋ2 = ε(x1 + b0 − b1x2). (25b)

For the fixed values of the parameters a = 0.5, ε = 0.08,
b0 = 0.7, and b1 = 0.8, the free neuron fires with the period
T0 ≈ 39.47. Numerically computed effective PRC is depicted
in Fig. 5(a). We take an optimal HF function ϕ∗(ωt) in the form
of harmonic signal with the frequency ω = 1000� and choose
I0 = 70. An example of optimal envelope for the fixed � = 0.1
is shown in panel (b). We present a graphical illustration of how
the envelope is constructed. For the given values of parameters,
the r.h.s. of Eq. (22) is equal to 2.5. This value is depicted
as a horizontal dashed line in panel (c). Its intersection with
the curve M+(u) gives the value u0, which is represented by a
vertical dashed line. Then we depict the value u0 as a horizontal
dashed line in panel (a). Finally, the optimal envelope ψ∗(�0ϑ)
is equal to 1 in the regions of ϑ where zeff(ϑ) > u0 and is equal
to 0 otherwise.

In Fig. 6, we compare the Arnold tongues of the FHN model
obtained with two different envelopes: (i) the optimal envelope
ψ∗ defined by Eq. (23) and (ii) a non-optimal, “quarter”
envelope ψ1/4, which a quarter of the period is equal to 1 and
the rest part is equal to 0. In both cases we take the HF carrier
signal ϕ(ωt) as a harmonic function. The minimal power
necessary to attain an entrainment of the oscillator has been
estimated by three different methods, namely, using the phase
Eq. (9), the averaged Eq. (7), and the original system (25). The
simulations confirm the advantage of the optimal envelope,
since it provides the entrainment with less power as compared
to the “quarter” envelope.

FIG. 6. (Color online) The Arnold tongues of the FHN sys-
tem (25). The red and blue colors show the results obtained with the
optimal ψ∗ and “quarter” ψ1/4 envelope, respectively. Solid curves
are derived from the phase Eq. (9), circles represent the results of
the averaged Eq. (7) and the crosses show the results obtained from
the original system (25). When computing the solid curves for the
optimal envelope, we fixed I0 = 70, while for circles and crosses, at
each given �, we used the same waveform as for the solid curve and
varied slightly I0 until the entrainment threshold was reached.
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IV. CONCLUSIONS

In conclusion, we have developed the phase reduction
theory for a limit cycle oscillator driven by a strong amplitude-
modulated high-frequency force and found an optimal wave-
form that ensures an entrainment of the oscillator with minimal
power. Our findings are relevant to design of mild neurostim-
ulation protocols for treatment of neurological diseases.
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APPENDIX: THE AMHF WAVEFORM OPTIMIZATION

According to Eq. (20), the power of the AMHF perturbation
can be presented as a product of two factors P = P�Pω, where

P� =
(

ω2

2π

∫ 2π

0
A2ψ2(s)ds

)
, Pω =

(
1

2π

∫ 2π

0
ϕ2(s)ds

)
.

(A1)

For the fixed frequencies ω and �, we are seeking to find the
optimal waveforms ϕ(ωt) and ψ(�t) as well as the optimal
value of the amplitude A, which provide an entrainment of
a given oscillator to the envelope frequency � with minimal
power P . The dynamics of the oscillator is defined by Eq. (9)
given in the main text. For clarity of the presentation, here we
rewrite this equation:

ϑ̇(t) = 1 + 〈�2〉
2

A2ψ2(�t)zeff(ϑ). (A2)

The entrainment takes place if the system (A2) admits a
solution with the boundary conditions

ϑ(0) = 0, (A3a)

ϑ(T ) = T0, (A3b)

where T0 = 2π/�0 is the natural period of the oscillator and
T = 2π/� is the period of the envelope. The main conditions
of the optimization are as follows. The both functions ϕ(s) and
ψ(s) are 2π -periodic with respect to the variable s and their
values lie in the interval [−1,1]. The function ϕ(s) satisfies the
charge-balanced condition

∫ 2π

0 ϕ(s)ds = 0. The external force
is restricted by some value I0, so that |Kψ(�t)ϕ(ωt)| � I0

holds for any time. Thus the the amplitude A is restricted by
the interval A ∈ [0,I0/ω].

Note that in all equations, the function ψ and the amplitude
A appear as a product Aψ and thus the variation of A and ψ can
be considered as a variation of a new function �(s) = Aψ(s).
The function �(s) admits the variation of both the amplitude
and the waveform. This is in contrast to the function ψ(s),
which has a fixed amplitude and admits the variation of only
the waveform. Let us say, we have found such ϕ and Aψ that
satisfy Eq. (A2) with the boundary conditions (A3). For the
given ϕ, let us denote the value of 〈�2〉 by 〈�2〉 ≡ B. First we
fix Aψ and 〈�2〉 and vary ϕ in order to minimize the power.

Since the power functional is the product of two functionals
P = P�[Aψ]Pω[ϕ], our first problem is to minimize Pω[ϕ]
for the fixed 〈�2〉. This allows us to find an optimal high
frequency waveform ϕ∗. In the second stage, we fix ϕ = ϕ∗
and vary Aψ in order to minimize the functional P�[Aψ].

The next two sections are devoted to the solution of these
two separate problems.

1. High frequency waveform optimization

We start from optimization of the high frequency waveform
ϕ. For a given value 〈�2〉 = B, we are seeking to minimize
the functional Pω[ϕ] with the constrains

∫ 2π

0 ϕ(s)ds = 0 and
ϕ(s + 2π ) = ϕ(s). We also require that the maximum of the
function ϕ(s) is equal to 1 and the minimum is not bellow than
−1 (see the main text). Using Eq. (2), the term 〈�2〉 can be
written as

〈�2〉 = 〈
�2

1

〉 − 〈�1〉2. (A4)

We rewrite the function �1(s) = ∫ s

0 ϕ(s ′)ds ′ in the form

�1(s) = ∫ 2π

0 [1 − H (s ′ − s)]ϕ(s ′)ds ′, where H (·) is the Heav-
iside step function. Now we can write down the functional

J [ϕ] = Pω[ϕ] + λ1

∫ 2π

0
ϕ(s)ds + λ2{〈�2〉 − B}

= 1

2π

∫ 2π

0
ϕ2(s)ds + λ1

∫ 2π

0
ϕ(s)ds

+ λ2

{
1

2π

∫ 2π

0

(∫ 2π

0
[1 − H (s − t)]ϕ(s)ds

)2

dt

−
(

1

2π

∫ 2π

0

∫ 2π

0
[1 − H (s − t)]ϕ(s)dsdt

)2

− B

}
,

which we aim to minimize. Here λ1 and λ2 are the Lagrange
multipliers. Equating the first variation of the functional to
zero, we obtain

2ϕ(s)

2π
+ λ1 + λ2

2π

∫ 2π

0

∫ 2π

0
2[1 − H (y − t)]

× [1 − H (s − t)]ϕ(y)dydt − λ2

(2π )2

×
∫ 2π

0

∫ 2π

0

∫ 2π

0
2[1 − H (y − z)]

× [1 − H (s − t)]ϕ(y)dydzdt = 0.

This is a rather complicated integral equation. However, by
differentiating this equation two times with respect to the
variable s, we come to the differential equation:

ϕ′′(s) − λ2ϕ(s) = 0. (A5)

Since the function ϕ(s) is 2π -periodic and its maximum is
equal to 1, we obtain that λ2 = −1 and ϕ(s) = sin(s + β).
Thus the optimal HF waveform (which we mark by an asterisk)
is the harmonic signal ϕ∗(s) = sin(s + β). Note that this
function automatically satisfies the charge-balanced condition∫ 2π

0 ϕ∗(s)ds = 0. Also, it follows that B = 1/2. We have
obtained the defined value of B due to the fixed amplitude
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of the function ϕ. Finally, the minimal value of the functional
Pω[ϕ] is

Pω[ϕ∗] = 1/2. (A6)

2. Optimization of the envelope waveform

Now we consider the problem of optimization of the wave-
form Aψ . Our aim is to attain an entrainment of the perturbed
oscillator to the envelope frequency � with the minimal value
of the functional P�[Aψ]. We recall that the envelope ψ(s)
is a 2π -periodic function whose values are in the interval
−1 � ψ(s) � 1 and the maximum of ψ2(s) is equal to 1.
Also, the external perturbation never exceeds some predefined
value I0, i.e., |Kψ(�t)ϕ(ωt)| � I0 or |ωAψ(�t)| � I0 for any
time. From here it follows that A ∈ [0,I0/ω].

To minimize the envelope’s power functional

P�[Aψ] = ω2

T

∫ T

0
A2ψ2(�t)dt, (A7)

with the above listed conditions, we refer to Pontriagin’s
theory [16]. To this end we introduce the Lagrangian as
L(Aψ) = A2ψ2(�t)ω2/T and define the Hamiltonian of the
system as H(ϑ,Aψ,p) = pϑ̇ − L(Aψ) or

H(ϑ(t),Aψ(�t),p(t))

= p(t) + A2ψ2(�t)

[ 〈�2〉
2

zeff(ϑ)p(t) − ω2

T

]
. (A8)

We denote the optimal trajectory (where P�[Aψ] is minimal)
with an asterisk: ϑ∗(t), A∗ψ∗(�t) and p∗(t). The Pontryagin
maximum principle states that the Hamiltonian is constant
on the optimal trajectory and this constant is the maximum
possible value of the Hamiltonian. Applying this principle
to Eq. (A8), we easily derive the optimal waveform of the
envelope

ψ∗(�t) =
{

1 when zeff(ϑ∗)p∗(t) > 2ω2

〈�2〉T
0 when zeff(ϑ∗)p∗(t) < 2ω2

〈�2〉T
(A9)

and obtain that the optimal value of the amplitude is its
maximal allowable value, A∗ = I0/ω. Let us denote the
maximum constant value of the Hamiltonian as 2ω2

〈�2〉T u0
, i.e.,

H(ϑ∗,A∗ψ∗,p∗) = 2ω2

〈�2〉T u0
. Here u0 is some constant, whose

value will be determined later. Then in time intervals, where
ψ∗(�t) is equal to zero, we have p∗(t) = 2ω2

〈�2〉T u0
. Therefore

the second condition of Eq. (A9) simplifies to zeff(ϑ∗)/u0 < 1.
The first condition of Eq. (A9) can be simplified as well. We
substitute ψ∗(�t) = 1 and A∗ = I0/ω into Eq. (A8) and find
p∗(t). Then inserting the obtained p∗(t) into the first condition,
we find that it transforms to zeff(ϑ∗)/u0 > 1. Finally, Eq. (A9)
simplifies to

ψ∗(�t) =
{

1 when zeff(ϑ∗)/u0 > 1

0 when zeff(ϑ∗)/u0 < 1
. (A10)

Now using Eq. (A2) and conditions (A3), we can define
the constant u0. For the positive frequency mismatch � > 0,
we need to increase the phase velocity ϑ̇ in order to attain an
entrainment. Therefore, we have to switch on the perturbation,
ψ∗(�t) = 1, in the time intervals where zeff(ϑ∗(t)) is positive

[see Eq. (A2)]. For � < 0, the phase velocity has to decrease,
and thus the perturbation has to be switched on, ψ∗(�t) = 1,
in the time intervals where zeff(ϑ∗(t)) is negative. This means
that the the constant u0 has to be of the same sign as the
mismatch �. From Eq. (A2) and conditions (A3), we obtain

∫ T0

0

dϑ∗

1 + 〈�2〉I 2
0

2ω2 zeff(ϑ∗)ψ∗2(�t)
=

∫ T

0
dt. (A11)

Taking into account that ω−2 is a small parameter, we expand
the l.h.s. of Eq. (A11) in Taylor series. Then discarding the
terms O(ω−4), we get

T0 + 〈�2〉I 2
0

2ω2

∫ T0

0
zeff(ϑ

∗)ψ∗2(�t)dϑ∗ = T . (A12)

By introducing the auxiliary functions (21), Eq. (A12) can be
rewritten as

〈�2〉I 2
0

2ω2
M±(u0) = T − T0

T0
. (A13)

We assume that the difference between T0 and T peri-
ods is of the order O(ω−2), i.e., T0 = T + O(ω−2). Then
we have (T − T0)/T0 = (T − T0)/(T + O(ω−2)) = �[1 +
O(ω−2)] ≈ �. Finally, we get

M±(u0) = 2ω2�

〈�2〉I 2
0

. (A14)

Since � = �0 + O(ω−2) and ϑ∗(t) = t + O(ω−2) on the time
interval t ∈ [0,T ], we can replace � by �0 and t by ϑ∗ in
Eq. (A10):

ψ∗(�0ϑ
∗) =

{
1 when zeff(ϑ∗)/u0 > 1
0 when zeff(ϑ∗)/u0 < 1

. (A15)

This equation is equivalent to Eq. (23) of the main text.
Note that the entrainment is possible only when I0 > Icr =

ω[2�/〈�2〉M±(0)]
1/2

. The existence of the critical value Icr

is explained as follows. Let us say the frequency mismatch
is positive, � > 0. Then to attain the maximal increase of
the phase during the period of oscillations, we have to switch
on the perturbation with the maximal amplitude A = I0/ω in
time intervals where zeff(ϑ(t)) is positive and switch off the
perturbation where zeff(ϑ(t)) < 0 [see Eq. (A2)]. Estimating
the entrainment threshold with such a stimulation protocol, we
define the above critical value Icr.

Substituting Eq. (A15) into Eq. (A7), we find the minimal
value of the power functional

P�[A∗ψ∗] = I 2
0 N±(u0) (A16)

attained with the optimal waveform A∗ψ∗. The functions
N±(u) are defined in Eq. (24).
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[7] V. Novičenko and K. Pyragas, Physica D: Nonlinear Phenomena
241, 1090 (2012); K. Kotani, I. Yamaguchi, Y. Ogawa, Y. Jimbo,
H. Nakao, and G. B. Ermentrout, Phys. Rev. Lett. 109, 044101
(2012).

[8] Y. Kawamura, H. Nakao, K. Arai, H. Kori, and Y. Kuramoto,
Phys. Rev. Lett. 101, 024101 (2008); Y. Kawamura, H. Nakao,
and Y. Kuramoto, Phys. Rev. E 84, 046211 (2011).

[9] W. Kurebayashi, S. Shirasaka, and H. Nakao, Phys. Rev. Lett.
111, 214101 (2013).

[10] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods
in Nonlinear Dynamical Systems (Springer, Berlin, 2007).

[11] V. Burd, Method of Averaging for Differential Equations on
an Infinite Interval (Taylor & Francis Group, Boca Raton, FL,
2007).

[12] S. B. Brummer and M. Turner, Bioelectrochem. Bioenerg. 2,
13 (1975); D. Harnack, C. Winter, W. Meissner, T. Reum, A.
Kupsch, and R. Morgenstern, J. Neurosci. Methods 138, 207
(2004); U. B. Barnikol, O. V. Popovych, C. Hauptmann, V.
Sturm, H.-J. Freund, and P. A. Tass, Phil. Trans. R. Soc. A 366,
3545 (2008).

[13] P. A. Tass, Prog. Theor. Phys. Suppl. 150, 281 (2003); ,Biol.
Cybern. 89, 81 (2003); P. A. Tass, L. Qin, C. Hauptmann, S.
Dovero, E. Bezard, T. Boraud, and W. G. Meissner, Annals of
Neurology 72, 816 (2012); M. Ebert, C. Hauptmann, and P. A.
Tass, Front. Comput. Neurosci. 8, 154 (2014).

[14] A. Benabid and P. Pollak, The Lancet 337, 403 (1991); W.
Marks, Current Treatment Options in Neurology 7, 237 (2005).

[15] A. M. Lozano and H. Eltahawy, in Advances in Clinical Neu-
rophysiology Proceedings of the 27th International Congress
of Clinical Neurophysiology, AAEM 50th Anniversary and 57th
Annual Meeting of the ACNS Joint Meeting, Supplements to
Clinical Neurophysiology, Vol. 57, edited by D. S. M. Hallett,
L.H. Phillips, and J. Massey (Elsevier, New York, 2004),
pp. 733–736. P. J. Uhlhaas and W. Singer, Neuron 52, 155
(2006); C. Hammond, H. Bergman, and P. Brown, Trends in
Neuroscience 30, 357 (2006).

[16] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E.
F. Mishchenko, The Mathematical Theory of Optimal Processes
(John Wiley & Sons, New York, 1962).

[17] C. Morris and H. Lecar, Biophys. J. 35, 193 (1981).
[18] R. A. FitzHugh, Biophys. J. 1, 445 (1961); J. Nagumo,

S. Arimoto, and S. Yoshizawa, Proc. IRE 50, 2061
(1962).

[19] I. Ratas and K. Pyragas, Phys. Rev. E 86, 046211 (2012).

012910-8

http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1016/j.sysconle.2014.09.011
http://dx.doi.org/10.1016/j.sysconle.2014.09.011
http://dx.doi.org/10.1016/j.sysconle.2014.09.011
http://dx.doi.org/10.1016/j.sysconle.2014.09.011
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1016/j.physd.2012.03.001
http://dx.doi.org/10.1016/j.physd.2012.03.001
http://dx.doi.org/10.1016/j.physd.2012.03.001
http://dx.doi.org/10.1016/j.physd.2012.03.001
http://dx.doi.org/10.1103/PhysRevLett.109.044101
http://dx.doi.org/10.1103/PhysRevLett.109.044101
http://dx.doi.org/10.1103/PhysRevLett.109.044101
http://dx.doi.org/10.1103/PhysRevLett.109.044101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevLett.111.214101
http://dx.doi.org/10.1103/PhysRevLett.111.214101
http://dx.doi.org/10.1103/PhysRevLett.111.214101
http://dx.doi.org/10.1103/PhysRevLett.111.214101
http://dx.doi.org/10.1016/0302-4598(75)80002-X
http://dx.doi.org/10.1016/0302-4598(75)80002-X
http://dx.doi.org/10.1016/0302-4598(75)80002-X
http://dx.doi.org/10.1016/0302-4598(75)80002-X
http://dx.doi.org/10.1016/j.jneumeth.2004.04.019
http://dx.doi.org/10.1016/j.jneumeth.2004.04.019
http://dx.doi.org/10.1016/j.jneumeth.2004.04.019
http://dx.doi.org/10.1016/j.jneumeth.2004.04.019
http://dx.doi.org/10.1098/rsta.2008.0104
http://dx.doi.org/10.1098/rsta.2008.0104
http://dx.doi.org/10.1098/rsta.2008.0104
http://dx.doi.org/10.1098/rsta.2008.0104
http://dx.doi.org/10.1143/PTPS.150.281
http://dx.doi.org/10.1143/PTPS.150.281
http://dx.doi.org/10.1143/PTPS.150.281
http://dx.doi.org/10.1143/PTPS.150.281
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1002/ana.23663
http://dx.doi.org/10.1002/ana.23663
http://dx.doi.org/10.1002/ana.23663
http://dx.doi.org/10.1002/ana.23663
http://dx.doi.org/10.3389/fncom.2014.00154
http://dx.doi.org/10.3389/fncom.2014.00154
http://dx.doi.org/10.3389/fncom.2014.00154
http://dx.doi.org/10.3389/fncom.2014.00154
http://dx.doi.org/10.1016/0140-6736(91)91175-T
http://dx.doi.org/10.1016/0140-6736(91)91175-T
http://dx.doi.org/10.1016/0140-6736(91)91175-T
http://dx.doi.org/10.1016/0140-6736(91)91175-T
http://dx.doi.org/10.1007/s11940-005-0017-z
http://dx.doi.org/10.1007/s11940-005-0017-z
http://dx.doi.org/10.1007/s11940-005-0017-z
http://dx.doi.org/10.1007/s11940-005-0017-z
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/j.tins.2007.05.004
http://dx.doi.org/10.1016/S0006-3495(81)84782-0
http://dx.doi.org/10.1016/S0006-3495(81)84782-0
http://dx.doi.org/10.1016/S0006-3495(81)84782-0
http://dx.doi.org/10.1016/S0006-3495(81)84782-0
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1103/PhysRevE.86.046211
http://dx.doi.org/10.1103/PhysRevE.86.046211
http://dx.doi.org/10.1103/PhysRevE.86.046211
http://dx.doi.org/10.1103/PhysRevE.86.046211



