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presence of a small time delay mismatch
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The delayed feedback control (DFC) methods are noninvasive, which means that the control signal vanishes
if the delay time is adjusted to be equal to the period of a target unstable periodic orbit (UPO). If the delay time
differs slightly from the UPO period, a nonvanishing periodic control signal is observed. We derive an analytical
expression for this period for a general class of multiple-input multiple-output systems controlled by an extended
DFC algorithm. Our approach is based on the phase-reduction theory adapted to systems with time delay. The
analytical results are supported by numerical simulations of the controlled Rössler system.
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I. INTRODUCTION

The use of time delayed signals for controlling unstable
periodic orbits (UPOs) in complex dynamical systems has
attracted considerable interest for the past two decades. A
method introduced by Pyragas [1], known as delayed feedback
control (DFC), does not require any exact model of controlled
objects and complicated computer processing for the recon-
struction of underlying dynamics. The control scheme consists
of measuring an output signal s(t), taking the time delayed
difference s(t) − s(t − τ ) amplified by some factor K , and
using this control signal to modulate an input parameter of the
system. By appropriate adjustment of the control amplitude
K , the successful stabilization of a time-periodic state can be
achieved. When the delay time τ is chosen equal to the period
T of the target UPO, the control scheme is clearly noninvasive
since the control force K[s(t) − s(t − τ )] vanishes when the
target state is reached. An important modification of the DFC
algorithm, known as an extended DFC (EDFC), has been
introduced by Socolar et al. [2]; it uses multiple delays in
the form of an infinite series and allows the stabilization of
highly unstable orbits [3]. The DFC and EDFC algorithms
have been applied successfully in diverse research areas. A
review of experimental and theoretical achievements until
2006 can be found in Ref. [4]. The recent developments of
the DFC algorithm include the refuting of the odd number
limitation [5–9], the analysis of basins of attraction of the
stabilized orbits [10–12], the DFC-based bifurcation analysis
for experiments [13,14], the DFC with a time-varying delay
[15], and adaptive modifications of the DFC [16,17]. Yamasue
et al. [18] have recently demonstrated an important practical
application of the DFC in an atomic force microscope to
stabilize cantilever oscillation and to remove artifacts on a
surface image.

Experimental implementation of the DFC method requires
knowledge of the period T of a target UPO. For autonomous
systems, this period is not known a priori, and a number
of algorithms for estimating this period from an observed
control signal has been developed. The algorithms are based
on the fact that the amplitude of the control signal has a
resonance-type dependence on the delay time [1], and the
period of the UPO can be extracted from the minima of this
dependence using various adaptive techniques [16,19–23]. A
sophisticated theoretical foundation for obtaining the UPO

period has been developed by Just et al. [24]. In the case
of successful stabilization of a target UPO, the periodic
oscillations conserve in the controlled system, even for τ �= T ,
provided the mismatch τ − T is small, however, the period
� of these oscillations differs from the UPO period T . In
Ref. [24], an analytical expression for the period � has been
derived up to second order in the mismatch,

�(K,τ ) = T + K

K − κ
(τ − T ) + O[(τ − T )2]. (1)

Here, κ is a system parameter which captures all the details
concerning the coupling of the control force to the system. The
theory presented in Ref. [24] as well as Eq. (1) is restricted to
the case of the DFC algorithm applied to the systems having a
single scalar input.

The main goal of this paper is to derive an analytical
expression for the period � for the EDFC algorithm applied
to a general class of multiple-input multiple-output (MIMO)
systems. Our approach is based on the phase-reduction theory
of weakly perturbed limit cycle oscillations in systems with
time delays, which was developed in our recent paper [25]. We
also present the algorithm for computation of the parameter κ

and other inherent system parameters arising in our generalized
expression for the period �. Moreover, the theoretical results
obtained in this paper are applicable to a wider class of
problems; they can be used to analyze the influence of
any weak time-dependent perturbations on dynamics of the
controlled system.

The rest of the paper is organized as follows. In Sec. II, we
present a mathematical formulation of the problem. In Sec. III,
we consider the EDFC algorithm for τ = T in the presence of a
weak time-dependent perturbation and derive a phase-reduced
equation. Section IV is devoted to the case τ �= T and the
derivation of an analytical expression for the period �. The
obtained theoretical results are demonstrated numerically for
the Rössler system in Sec. V. The paper is finished with the
conclusions presented in Sec. VI.

II. PROBLEM FORMULATION

The EDFC algorithm has been originally introduced for a
dynamical system with a scalar control variable [2]. In this
paper, we consider the very general version of this algorithm
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VIKTOR NOVIČENKO AND KESTUTIS PYRAGAS PHYSICAL REVIEW E 86, 026204 (2012)

applied to a MIMO system,

ẋ(t) = f[x(t),u(t)], (2a)

s(t) = g[x(t)], (2b)

u(t) = K

[
(I − R)

∞∑
j=1

Rj−1s(t − jτ ) − s(t)

]
. (2c)

Here, x(t) ∈ Rn denotes the state vector of the system,
u(t) ∈ Rk is a control vector variable (k-dimensional input),
and f (x,u) is a nonlinear vector function that defines the
dynamical laws of the system and the input properties of
the control variable. Equation (2b) defines an l-dimensional
output signal s(t), which is related to the n-dimensional state
vector x through a vector function g:Rn → Rl . Equation (2c)
gives the EDFC relation between the output vector variable s
and the control vector variable u. The diagonal l × l matrix
R = diag(R1, . . . ,Rl) defines a set of memory parameters Rm,
which generally can be different for the different components
sm of the output signal. However, we assume that the delay time
τ for all components is the same. To provide the convergence
of the infinite sum in Eq. (2c), we require that |Rm| < 1
for m = 1, . . . ,l. The control k × l matrix K defines the
transformation of the output variable s(t) to the control (input)
variable u(t), and I denotes an l × l identity matrix.

We suppose that the control-free (K = 0) system has an
unstable T -periodic orbit ξ (t) = ξ (t + T ) that satisfies the
equation ξ̇ (t) = f[ξ (t),0]. The aim of the EDFC signal (2c)
is to stabilize this orbit. If we take the delay time equal to the
UPO period τ = T and if the stabilization is successful, then
s(t − jτ ) = s(t),

∑∞
j=1 Rj−1 = (I − R)−1, and the control

variable vanishes u = 0. This means that the control law (2c)
applied to a MIMO system (2a) is noninvasive.

The aim of this paper is to analyze the situation when
the delay time differs from the period of the UPO τ �= T .
We assume that the control parameters are chosen such that,
for τ = T , the stabilization is successful, and the controlled
system demonstrates stable periodic oscillations with the
period � = T . If we slightly detune the delay time τ , then
the system still remains in the regime of stable periodic
oscillations, but the period � of these oscillations is changed
� �= T . We are seeking to derive an analytical expression for
the period � in the dependence of the system parameters using
the general formulation of the problem defined by Eqs. (2).

To solve this problem, we appeal to the phase-reduction
theory of systems with multiple time delays, which is outlined
in Appendix A. In the next section, we obtain the phase-
reduced equations for a slightly perturbed system (2) with
τ = T and show that the profile of the phase response curve
(PRC) of controlled orbit does not depend on the control and
memory matrices K and R. Then, in Sec. IV, we consider
the case τ �= T and split the control force into mismatched
and nonmismatched components. Treating the mismatched
component as a small perturbation in the phase-reduction
procedure, we derive an analytical expression for the period �.

III. PHASE REDUCTION OF THE SLIGHTLY PERTURBED
EDFC SYSTEM FOR τ = T

In this section, we consider the system (2) assuming that
τ = T and the parameters of the control K and memory R

matrices are chosen such that the stabilization of the target
UPO is successful. Then, x = ξ (t) is the stable periodic
solution of the system (2). We are interested in how this
solution will change in the presence of small perturbations.
To this end, we add, to the right-hand side of Eq. (2a), a small
perturbing term εψ(t) and taking into account that τ = T ,
rewrite the system (2) as follows:

ẋ(t) = f[x(t),u0(t)] + εψ(t), (3a)

s(t) = g[x(t)], (3b)

u0(t) = K

[
(I − R)

∞∑
j=1

Rj−1s(t − jT ) − s(t)

]
. (3c)

Here, ψ(t) = [ψ1(t), . . . ,ψn(t)]T is a time-dependent n-
dimensional vector, and ε is a small parameter |ε| � 1. To
distinguish the case τ = T , we have marked the control
variable by the zero subscript.

The sum in Eq. (3c) incorporates an infinite number of
delays, and formally, the initial value for the EDFC is an
infinite history. However, in reality, only a finite number
of delays is practical since the influence of longer delays
decreases exponentially. To avoid the problem with an infinite
memory, we consider the EDFC with a finite number M of
delay terms by replacing Eq. (3c) with

ũ0(t) = K

[
P

M∑
j=1

Rj−1s(t − jT ) − s(t)

]
, (4)

and after the derivation of the final result, we take the limit
M → ∞. Here, the matrix,

P = (I − R)(I − RM )−1 (5)

is introduced to ensure the noninvasiveness of the control
scheme for any finite M since

∑M
j=1 Rj−1 = P−1. For M →

∞, Eq. (4) transforms to Eq. (3c).
The description of weakly perturbed stable limit cycle

oscillations defined by Eqs. (3a), (3b), and (4) can essentially
be simplified by using the phase-reduction method. The
application of this method to the systems with time delays
is presented in our recent paper [25]. The consideration in
Ref. [25] was restricted to the systems with a single time delay.
In Appendix A, we present its straightforward extension to the
case of multiple time delays. According to the results presented
in Appendix A, the dynamics of the weakly perturbed EDFC
systems (3a), (3b), and (4) can be reduced to the phase
dynamics as follows:

ϕ̇(t) = 1 + εzT [ϕ(t)]ψ(t) + O(ε2). (6)

Here, ϕ(t) is a scalar variable that defines the phase of
oscillations, and z is an infinitesimal PRC of the sys-
tem. The PRC z = (z1, . . . ,zn)T represents an n-dimensional
T -periodic vector function z(ϕ) = z(ϕ + T ) that satisfies the
adjoint equation,

żT (t) = −zT (t)A0(t) + zT (t)W(t)KV(t)

−
M∑

j=1

zT (t + jT )W(t)KPRj−1V(t), (7)
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where

A0(t) = D1f[ξ (t),0], (8a)

W(t) = D2f[ξ (t),0], (8b)

V(t) = Dg[ξ (t)] (8c)

are the T -periodic matrices. The matrix A0(t) is the Jacobian
matrix of the control-free system estimated on the UPO ξ (t),
where D1 is the vector derivative of the function f(x,u) with
respect to the first argument. The symbol D2 in the definition
of the matrix W(t) denotes the vector derivative of the function
f(x,u) with respect to the second argument. The matrix V(t)
represents the vector derivative of the function g(x) that relates
the output variable s with the state variable x. Equation (7) is
derived from Eqs. (A5) and (A3) taking into account that the
multiple delay times in our case are as follows: τj = jT , j =
1, . . . ,M .

To find the PRC of the system, we have to solve Eq. (7) with
the requirement of the periodicity z(t + T ) = z(t). It is easy
to see that, for any T -periodic z(t) function, the last two terms
in Eq. (7) vanish since

∑M
j=1 zT (t + jT )W(t)KPRj−1V(t) =

zT (t)W(t)KV(t). Therefore, the PRC of the controlled system
also satisfies the adjoint equation of the control-free system,

żT (t) = −zT (t)A0(t). (9)

This equation is independent of the control K and memory R
matrices. It means that the profile of the PRC of the controlled
system is invariant with respect to the variation in K and R.
However, the amplitude of the PRC does depend on these
matrices. Let us say we have two different PRCs z(1)(t) and
z(2)(t), corresponding to two different selections of the control
and memory matrices (K(1),R(1)) and (K(2),R(2)), then from
the invariancy of the profile, it follows that these PRCs are
proportional to each other: z(2)(t) ∝ z(1)(t).

In the following, we denote the PRC of a UPO of the
control-free system as ρ(t) and treat it as a basic PRC. Then,
we can express the PRC z(t) of the controlled system for any
choice of (K,R) through this basic PRC,

z(t) = α(K,R)ρ(t). (10)

The proportionality coefficient α(K,R) can be obtained from
the initial condition (A6), which for our system, takes the form

zT (0)ξ̇ (0) +
M∑

j=1

j

∫ 0

−T

zT (ϑ)Bj (ϑ)ξ̇ (ϑ)dϑ = 1, (11)

where

Bj (ϑ) = W(ϑ)KPRj−1V(ϑ). (12)

The PRC of the UPO of the control-free system is a periodic
function ρ(t) = ρ(t + T ) that satisfies the following equation
and initial condition:

ρ̇T (t) = −ρT (t)A0(t), (13a)

ρT (0)ξ̇ (0) = 1. (13b)

The sum in Eq. (11) can be determined analytically,

M∑
j=1

jRj−1 = [I + MRM+1 − (M + 1)RM ](I − R)−2, (14)

and then, Eq. (11) simplifies to

zT (0)ξ̇ (0) +
∫ 0

−T

zT (ϑ)W(ϑ)KQV(ϑ)ξ̇ (ϑ)dϑ = 1, (15)

where

Q = (I − R)−1 − MRM (I − RM )−1. (16)

To derive the expression for the above coefficient of
proportionality α(K,R), we substitute Eq. (10) into Eq. (15)
and use the condition (13b). Then, we take the limit M → ∞.
For M → ∞, the matrix (16) becomes Q = (I − R)−1, and
we finally obtain

α(K,R) =
⎡
⎣1 +

k∑
r=1

l∑
p=1

KrpCpr

1 − Rp

⎤
⎦

−1

. (17)

Here, we introduced an l × k matrix C, whose elements are
defined by a double sum of the following integral:

Cpr =
n∑

i=1

n∑
s=1

∫ 0

−T

ρi(ϑ)Wir (ϑ)Vps(ϑ)ξ̇s(ϑ)dϑ. (18)

The matrix C captures all inherent properties of the controlled
system that define the variation in the PRC amplitude in
response to the variation in the matrices (K,R).

Equations (10) and (17) provide a convenient way to obtain
the PRC of the controlled system for any set of matrices
(K,R) using the knowledge of the basic PRC ρ(t) defined by
Eqs. (13). Unfortunately, Eq. (13a) is difficult to employ for a
numerical computation of the basic PRC ρ(t) since this PRC
corresponds to the UPO of the control-free system. Any UPO
of a chaotic system has Lyapunov exponents with positive and
negative real parts so that Eq. (13a) is unstable for both the
backwards and forwards integration. To avoid this problem,
we do not use Eq. (13a) for the numerical computation of ρ(t).
Instead, we employ Eq. (7), which is stable for the backwards
integration, provided the matrices (K,R) are chosen from
the domain of stability of the given UPO (cf. Ref. [25]). To
compute the basic PRC ρ(t), we proceed as follows. We choose
some fixed values of the matrices (K(1),R(1)) at which, the
controlled orbit is stable and, using arbitrary initial conditions,
integrate Eq. (7) backwards in time until it converges to
a periodic solution. Then, the basic PRC ρ(t) is obtained
by normalizing the amplitude of this solution according to
Eq. (13b).

The knowledge of the PRC z(t) of the controlled orbit
allows us to easily analyze the phase dynamics of the complex
delay differential equation (DDE) system (3) in the presence of
any weak time-dependent perturbations using a simple scalar
ordinary differential Eq. (6). In the next section, we utilize
these results in order to derive an analytical expression for
the period � of the stabilized orbit in the presence of a small
mismatch when the delay time τ differs slightly from the period
T of the target UPO.

IV. EDFC SYSTEM FOR τ �= T : DERIVATION OF AN
EXPRESSION FOR THE PERIOD �

In this section, we consider Eqs. (2) without external
perturbation but suppose that τ �= T . Our aim is to derive
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an analytical expression for the period � of the stabilized
orbit in the case of a small time delay mismatch. The
key idea of our approach is based on splitting the control
variable into nonmismatched and mismatched components.
The nonmismatched component stabilizes the UPO, whereas,
the mismatched component induces a small perturbation that
can be treated by the above presented phase-reduction theory.

Similar to the previous section, we consider the EDFC with
a finite number of delay terms by replacing Eq. (2c) with

ũ(t) = K

⎡
⎣P

M∑
j=1

Rj−1s(t − jτ ) − s(t)

⎤
⎦ . (19)

We represent the delay time in the form τ = T + ε, where

ε = τ − T (20)

is a small mismatch. Substituting this expression for τ in
Eq. (19) and expanding it with respect to ε, we get

ũ(t) = ũ0(t) − εKP
M∑

j=1

jRj−1Dg[x(t − jT )]ẋ(t − jT )

+O(ε2). (21)

Here, ũ0(t) is a nonmismatched part of the control variable
defined by Eq. (4). The remaining terms in Eq. (21) represent
the mismatched part of the control variable. Now, substituting
Eq. (21) into Eq. (2a) and expanding it with respect to ε up to
the first-order terms, we reveal that the systems (2a), (2b), and
(19) transform exactly to the forms (3a), (3b), and (4) with

ψ(t) = −D2f[x(t),ũ(t)]KP
M∑

j=1

jRj−1

×Dg[x(t − jT )]ẋ(t − jT ). (22)

When considering the phase dynamics of the stabilized orbit
ξ (t), in Eq. (22), we can substitute x(t) = ξ (t) and can treat
ψ(t) as an external perturbation (cf. Ref. [26]). Then, taking
the periodicity of ξ (t) into account, Eq. (22) simplifies to

ψ(t) = −W(t)KQV(t)ξ̇ (t). (23)

Taking the limit M → ∞, Eq. (23) transforms to

ψ(t) = −W(t)K(I − R)−1V(t)ξ̇ (t). (24)

Now, we can utilize all the results of the previous section,
which have been derived for an arbitrary external perturbation
ψ(t). In our case, the external perturbation has the particular
form (24), and the parameter ε is defined by Eq. (20).

The solution of the phase Eq. (6) has the form ϕ = t +
O(ε), and therefore, it can be alternatively written as

ϕ̇(t) = 1 + εzT (ϕ)ψ(ϕ) + O(ε2). (25)

The period � of the target orbit in the presence of a small time
delay mismatch can be estimated as follows:

� =
∫ T

0

dϕ

1 + εzT (ϕ)ψ(ϕ)
+ O(ε2)

= T − ε

∫ T

0
zT (ϕ)ψ(ϕ)dϕ + O(ε2). (26)

The integral in this equation can be expressed through the
coefficient α(K,R) introduced in the previous section,∫ T

0
zT (ϕ)ψ(ϕ)dϕ = α(K,R) − 1. (27)

This result follows from Eqs. (10), (17), (18), and (24).
Substituting Eq. (27) into Eq. (26) and using Eqs. (17) and
(20), we finally obtain the following analytical expression for
the period � = �(K,R,τ ):

� = T + (τ − T )

∑k
r=1

∑l
p=1 KrpCpr/(1 − Rp)

1 + ∑k
r=1

∑l
p=1 KrpCpr/(1 − Rp)

+O[(τ − T )2]. (28)

Equation (1), derived in Ref. [24], is the special case of
Eq. (28). If we take the zero memory matrix R = 0 and assume
that the control matrix has only one nonzero element K11 = K ,
then Eq. (28) transforms to Eq. (1) with κ = −1/C11.

V. NUMERICAL DEMONSTRATIONS

Now, we support the validity of the above theoretical results
and demonstrate their efficiency using numerical simulations.
For numerical analysis, we choose the Rössler system [27]
with the standard parameter values,

ẋ1(t) = −x2(t) − x3(t) + u1(t), (29a)

ẋ2(t) = x1(t) + 0.2x2(t) + u2(t), (29b)

ẋ3(t) = 0.2 + x3(t)[x1(t) − 5.7], (29c)

up(t) = Kpp

[
(1 − Rp)

∞∑
j=1

Rj−1
p xp(t − jτ ) − xp(t)

]

for p = 1,2. (29d)

Here, we apply the control perturbation to the first two
equations of the Rössler system using different values of
the memory parameter and different values of the coupling
strength. In this case, the output variable is a two-dimensional
vector s(t) = [x1(t),x2(t)]T , and both matrices K and R
are diagonal: K = diag(K11,K22) and R = diag(R1,R2). We
rewrite Eq. (28) in the form

� = T + (τ − T )�, (30)

where the parameter � for this particular case is as follows:

� = K11C11/(1 − R1) + K22C22/(1 − R2)

1 + K11C11/(1 − R1) + K22C22/(1 − R2)
. (31)

In the following, we like to check whether Eq. (31) correctly
describes the dependence of � on the control parameters
K11, K22, R1, and R2. When analyzing the dependence of
� on the coupling strengths K11 and K22, it is convenient to
introduce a ratio �/(1 − �) since, according to Eq. (31), it
depends linearly on these parameters,

�

1 − �
= K11C11

1 − R1
+ K22C22

1 − R2
. (32)

As a first demonstration, we consider the stabilization of
a period-two UPO of the Rössler system with the period
T ≈ 11.758 63. We compute the PRC ρ(t) of the control-free
UPO as described in Sec. III and estimate the parameters
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FIG. 1. Numerical results for the period-two UPO of the Rössler
system. (a) The parameter (1 − �)/� as a function of a memory
parameter R2 for a fixed K11 = 0 and different values of the parameter
K22. (b) The parameter �/(1 − �) as a function of control amplitude
K22 for the fixed R1 = R2 = 0 and different values of K11. The
symbols represent the results of the direct numerical simulation of
the original system (29), whereas, the solid lines show the analytical
results obtained from Eq. (32).

C11 = 5.9119 and C22 = 6.8694 according to Eq. (18). Then,
we compute the ratio (32) and, in Fig. 1(a), plot (the solid lines)
its inverse (1 − �)/� as a function of the memory parameter
R2 for a fixed K11 = 0 and different values of the parameter
K22. In part (b) of Fig. 1, we plot �/(1 − �) as a function of
control amplitude K22 for the fixed R1 = R2 = 0 and different
values of K11. To illustrate the validity of these theoretical
results, the parameter � has alternatively been estimated by
the direct numerical simulation of the original system (29).
To this end, the delay time τ has been chosen close to the
period T of the UPO so that τ − T = 0.02 and the period �

of the stabilized orbit has been estimated numerically. Then,
the parameter � has been computed according to Eq. (30) as
� = (� − T )/(τ − T ). These results are shown in the figure
by symbols. Note that the latter algorithm is applicable only in
the domain of control parameters where the stabilization of the
target UPO is successful. We see that the analytical expression
(31) predicts the dependence of � on the control parameters
well.

FIG. 2. The period � of the control signal as a function of
control parameters (a) K22 and (b) R2 for various delay times;
from bottom to top, τ − T = −1.0, −0.8, −0.6, −0.4, −0.2,

0, 0.2, 0.4, 0.6, 0.8, and 1.0. Other control parameters are as follows:
(a) K11 = 0, R2 = 0.2 and (b) K11 = 0, K22 = 0.2. The symbols
represent the results of the direct numerical simulation of the original
system (29), whereas, the solid curves show the analytical results
obtained from Eqs. (30) and (31). Some data points are missed
because the fixed point has been stabilized instead of the periodic
orbit.

To estimate the size of the mismatch τ − T for which
Eqs. (30) and (31) are valid, in Fig. 2, we plot the dependence of
� on K22 [part (a)] and R2 [part (b)] for different values of the
parameter τ − T . Again, the solid curves show the analytical
results obtained from Eqs. (30) and (31), whereas, the symbols
correspond to the direct numerical simulation of Eqs. (29). As
seen from the figure, the analytical results are valid for the
values of the relative mismatch (τ − T )/T up to 10%.

In Fig. 3, we demonstrate the verification of our theoretical
results for a high-period UPO for which, the usual DFC
algorithm (R = 0) does not work. We consider the stabilization
of a period-eight UPO with the period T ≈ 47.026 164 8. The
profile of the x2 component of the UPO and the ρ2 component
of its PRC are shown in parts (a) and (b), respectively. The
dependence of the ratio (32) on the coupling strength K22 for
K11 = 0 and different values of the memory parameter R2

is shown in part (c). The parameter C22 = 27.4483 has been
estimated from Eq. (18) using the computed PRC ρ2(ϕ). Again,
we observe a good coincidence of the analytical results given
by Eq. (32) with the results of the direct numerical simulation
of the original system (29).

VI. CONCLUSIONS

We have considered a general class of multiple-input
multiple-output systems subjected to an EDFC force in the
case when the delay time differs slightly from the period
of the UPO of the control-free system. We have derived an
analytical expression, which shows, in an explicit form, how
the period of stabilized orbit changes when varying the delay
time and the parameters of the control and memory matrices.
This result is important for the experimental implementation of
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FIG. 3. (Color online) Numerical results for the period-eight UPO
of the Rössler system. (a) The profile of the x2(t) component of the
UPO. (b) The second PRC component ρ2(ϕ) of the UPO. (c) The
dependence of the ratio �/(1 − �) on the control amplitude K22

for K11 = 0 and different values of the memory parameter R2. The
symbols represent the results of the direct numerical simulation of
the original system (29), whereas, the solid lines show the analytical
results obtained from Eq. (32).

the EDFC algorithm since it can facilitate the determination of
an unknown period of control-free UPOs. Using an analytical
relationship between the period of the control signal and
the control parameters, the unknown period of the control-
free UPO can be determined from only a few experimental
measurements (cf. Ref. [24]).

Our approach is based on the phase-reduction theory
adapted to systems with time delays [25]. We have reduced
the original EDFC system described by delay differential
equations to a simple scalar equation, which defines the
dynamics of the phase. We have also derived an equation for
the PRC of controlled orbit and have shown that its profile
is independent of the control and memory matrices. This fact
allows us to express the PRCs of the controlled UPO through
the PRC of the control-free UPO (the basic PRC). Although
the basic PRC corresponds to the unstable orbit, we have
formulated an algorithm for its numerical computation.

The approach based on the PRC theory is very universal.
Here, we have demonstrated its benefit to obtain the period
of the control signal in the presence of a small time delay
mismatch. The knowledge of the basic PRC and its relationship
with the PRCs of the controlled system with arbitrary control
parameters allows a simple investigation of the influence of any
weak time-dependent perturbations on the controlled system.
Furthermore, our results are of particular interest from the
plain theoretical point of view as well since dynamics with
time delay plays an important role in various fields of science.

ACKNOWLEDGMENT

This research was funded by the European Social Fund
under the Global Grant measure (Grant No. VP1-3.1-ŠMM-
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APPENDIX A: PHASE-REDUCTION THEORY
FOR SYSTEMS WITH MULTIPLE TIME DELAYS

The classical phase-reduction theory is usually formulated
for a weakly perturbed limit cycle oscillator described by the
ordinary differential equations (ODEs). Recently, we have
extended this approach to the systems described by DDEs
with a single time delay [25]. Two methods of derivation of
the phase-reduced equation have been presented. The first
(heuristic) method is based on physical arguments and uses
the representation of the delay term by a delay line, which
we model by an advection equation. By discretizing the space
variable of the advection equation, we come to a finite set of
ODEs and apply the classical PRC theory. Then, we return
to a continuous limit and obtain the PRC for the original
DDE. The second (direct) method deals directly with the DDEs
without recourse to the ODEs; it is based on the expansion of
the solution close to the limit cycle in the Floquet modes of
the linearized system. Both methods lead to the same result,
but the second method seems uncertain for some systems. If
the linearized system of the DDEs possesses small solutions,
the completeness of the expansion in the Floquet modes is
not guaranteed [28]. We discuss this issue in more detail in
Appendix B.

In this paper, we need an extension of the phase-reduction
theory to the systems with multiple time delays. The derivation
of the phase-reduced equation for the DDEs with multiple time
delays is rather long but is essentially the same as in the case of
a single delay described in Ref. [25]. Here, we do not present
the details of this derivation but outline only the main results.

Consider a weakly perturbed limit cycle oscillator described
by DDEs with multiple constant delays,

ẋ(t) = F[x(t),x(t − τ1), . . . ,x(t − τM )] + εψ(t). (A1)

Here, x = (x1, . . . ,xn)T is an n-dimensional vector, τ1, . . . τM

are the constant time delays, and εψ(t) = ε[ψ1(t), . . . ,ψn(t)]T

represents a small time-dependent perturbation, where ε is
a small parameter |ε| � 1. We assume that, for ε = 0, the
system has a stable limit cycle solution x = ξ (t) with a period
T : ξ (t) = ξ (t + T ). In the absence of external perturbation
(ε = 0), the dynamics of the system close to the limit cycle is
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described by the linearized equation,

δẋ(t) = A(t)δx +
M∑

j=1

Bj (t − τj )δx(t − τj ), (A2)

where δx(t) = x(t) − ξ (t). The matrices A(t) and Bj (t), j =
1, . . . ,M are the T -periodic Jacobian matrices defined as the
vector derivatives of the function F[x(t),x(t − τ1), . . . ,x(t −
τM )] with respect to the first (D1) and (j + 1)-th (Dj+1)
argument, estimated on the limit cycle of the unperturbed
system,

A(t) = D1F[ξ (t),ξ (t − τ1), . . . ,ξ (t − τM )], (A3a)

Bj (t) = Dj+1F[ξ (t),ξ (t − τ1), . . . ,ξ (t − τM )],

j = 1, . . . ,M. (A3b)

The phase reduction in Eq. (A1) can be performed by
expanding its solution in Floquet modes of the linearized
system (A2) (cf. Ref. [25] for details). As a result, the DDE
system (A1) is reduced to a single scalar equation that defines
the dynamics of the phase,

ϕ̇(t) = 1 + εzT [ϕ(t)]ψ(t) + O(ε2). (A4)

Here, z = (z1, . . . ,zn)T is an n-dimensional T -periodic vector
function z(ϕ + T ) = z(ϕ), referred to as an infinitesimal PRC.
The PRC is a periodic solution of the adjoint equation,

żT (t) = −zT (t)A(t) −
M∑

j=1

zT (t + τj )Bj (t + τj ), (A5)

with the initial condition,

zT (0)ξ̇ (0) +
M∑

j=1

∫ 0

−τj

zT (τj + ϑ)Bj (τj + ϑ)ξ̇ (ϑ)dϑ = 1.

(A6)

The adjoint equation (A5) represents a difference-differential
equation of the advanced type. Although this equation is
unstable, its periodic solution can be obtained numerically
by a backward integration [25] in a similar way as performed
for the case of ordinary differential equations [29]. Since the
matrices A(t) and Bj (t) are usually unavailable in an analytical
form, their values are estimated from a forward integration of
the unperturbed system (A1).

APPENDIX B: ON AN INFLUENCE OF SMALL SOLUTIONS

The direct method of derivation of the phase-reduced
Eq. (A4) for the system (A1) is based on the assumption
that any solution close to the limit cycle can be expanded
in Floquet modes of the linearized system (A2). The system
(A2) represents a nonautonomous DDE whose time delays
τj = jT , j = 1, . . . ,M are multiples of the period of the
matrices A(t) = A(t + T ) and Bj (t) = Bj (t + T ). As shown
in Refs. [30,31], such a system may admit small solutions,
which decay faster than any exponent, i.e., limt→∞ δx(t)ekt =
0 for all k ∈ R. If the system possesses small solutions,
the completeness of expansion in the Floquet modes is not
guaranteed. In Ref. [28], it is shown that only the properties
of the matrix BM (t) are relevant to the existence of small
solutions. Let us denote the eigenvalues of the matrix BM (t) as

λi(t), i = 1, . . . ,n. The small solutions appear if some of the
eigenvalues λi(t) at a moment t0 cross the origin in a complex
plane [32],

Re λi(t0+)Re λi(t0−) < 0, λi(t0) = 0. (B1)

We stress that the examples presented in Sec. V do
not contain small solutions since the matrices Bj (t) are
independent of time and do not meet the criterion (B1). Note
that the small solutions will not appear for the most popular
DFC schemes when the control perturbation is applied as an
external force with a constant control matrix.

To check whether our analytical results remain valid for the
case when the system possesses small solutions, we consider
the following specific example based on the Landau-Stuart
oscillator:

ẋ1(t) = x1(t)
[
1 − x2

1 (t) − x2
2 (t)

]− x2(t)
[
u(t) + x2

1 (t) + x2
2 (t)

]
,

(B2a)

ẋ2(t) = x2(t)
[
1 − x2

1 (t) − x2
2 (t)

] + x1(t)
[
x2

1 (t) + x2
2 (t)

]
,

(B2b)

s(t) = g[x1(t),x2(t)] = x2
1 (t), (B2c)

u(t) = K [s(t − τ ) − s(t)] . (B2d)

Here, u(t), s(t), and K are the scalars and the memory
parameter R = 0. Unlike the examples presented in Sec. V,
here, the control-free system (K = 0) has a stable limit cycle
ξ1(t) = cos(t) and ξ2(t) = sin(t), but the control term may
induce small solutions. For our system, Eqs. (8b) and (8c) are
as follows:

W(t) = [−ξ2(t) 0]T , (B3a)

V(t) = [2ξ1(t) 0]. (B3b)

According to Eq. (12), the matrix B1(t), responsible for the
existence of small solutions, has the form

B1(t) =
(−2Kξ1(t)ξ2(t) 0

0 0

)
. (B4)

FIG. 4. (Color online) Comparison of numerical simulations of
the system (B2) with the analytical result (B5). The cycles represent
numerically computed values of � for different mismatches, whereas,
the straight line shows the analytical result.
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One of the eigenvalues of the matrix B1(t) crosses the origin of
the complex plane four times per period. Therefore, according
to the criterion (B1), our system has small solutions. The pres-
ence of small solutions in the system has also been confirmed
numerically by using the algorithm described in Refs. [33,34].

A nice property of the system (B2) is that the basic PRC
(13) can be obtained analytically: ρ1(ϑ) = −√

2 sin(ϑ − π/4)
and ρ2(ϑ) = √

2 cos(ϑ − π/4). The parameter � in Eq. (30)
can be defined analytically as well. For the control gain K = 1,

the value of this parameter is as follows:

� = π/(2 + π ). (B5)

In Fig. 4, we show that numerical simulations of the system
(B2) converge to the analytical result (B5) for small time delay
mismatches. This example demonstrates that our analytical
results remain valid even for the system possessing small
solutions. Additional investigations are needed to ascertain
whether this conclusion is valid in general.
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