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Problem formulation

Quantum system described by the Hamiltonian
     which is periodic with respect to 
the first argument and has additional slow time dependence:

In the limit           (any characteristic energy of  the system) can 
be transformed to the Srodinger-type equation with an effective 
Hamiltonian        does not containing fast oscillations.
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Evolution operator

The unitary evolution of  equation (*) can be factorized as

where both: the “Micromotion” operator and the effective 
evolution operator can be expanded in the powers of  .
In most cases the “Micromotion” operator can be ignored, for 
example if  the system is under external perturbation of  the 
form:
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           is the effective evolution governed by the Hamil-
tonian:
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Here the commutators contain the Fourier component of  the 
original Hamiltonian:

H (ωt, t) =

∞∑

m=−∞
H(m) (t) eimωt

Spin in an oscillating magnetic field

The non-zero Fourier components are

The effective Hamiltonian is given by

By definding a non-Abelian geometric vector potential as
              , the effective evolution reads

The integral depends only on a shape of  the path and does not 
depend on the velocy. Performing an anticlockwise rotation of  
the magnetic field with constant amplitude                by an 
angle      in a plane orthogonal to a unit vector           , the 
evolution operator (**) simplifies to

H (ωt, t) = gF F︸︷︷︸ ·
︷ ︸︸ ︷
B (t) cos (ωt)

Slowly varying amplitude of  the magnetic field:

Spin operator: F = F1ex + F2ey + F3ez
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Comparison of  analytical and numerical results for the 
spin-1/2 particle

The magnetic field             per-
forms            rotations for the system in an initial state
 . The analytical results represented by lines while the 
numerical results depicted by symbols.

B = Ω/gF [ez cos (Ωt)− ey sin (Ωt)]
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