High-frequency analysis of periodically driven quantum system with slowly varying amplitude

Viktor Novičenko (e-mail: viktor.novicenko@tfai.vu.lt), Egidijus Anisimovas and Gediminas Juzeliūnas
Institute of Theoretical Physics and Astronomy, Faculty of physics, Vilmius University, Sauletekio ave. 3, LT-10222 Vilnius, Lithuania

Problem formulation

Quantum system described by the Hamiltonian
$H(\omega t+2 \pi, t)=H(\omega t, t)$ which is periodic with respect to the first argument and has additional slow time dependence:

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t}|\phi\rangle=H(\omega t, t)|\phi\rangle \tag{*}
\end{equation*}
$$

In the limit $\hbar \omega \gg$ (any characteristic energy of the system) can be transformed to the Srodinger-type equation with an effective Hamiltonian $H_{\text {eff }}(t)$ does not containing fast oscillations.

Evolution operator

The unitary evolution of equation $\left(^{*}\right)$ can be factorized as

$$
U\left(t_{\text {fin }}, t_{\text {init }}\right)=U_{\text {Micro }}\left(\omega t_{\text {fin }}, t_{\text {fin }}\right) U_{\text {eff }}\left(t_{\text {fin }}, t_{\text {init }}\right) U_{\text {Micro }}^{\dagger}\left(\omega t_{\text {init }}, t_{\text {init }}\right)
$$

where both: the "Micromotion" operator and the effective evolution operator can be expanded in the powers of $(\hbar \omega)^{-1}$. In most cases the "Micromotion" operator can be ignored, for example if the system is under external perturbation of the form:

time
$U_{\text {eff }}\left(t_{\text {fin }}, t_{\text {init }}\right)$ is the effective evolution governed by the Hamiltonian:

$$
H_{\mathrm{eff}}(t)=H_{\mathrm{eff}(0)}(t)+H_{\mathrm{eff}(1)}(t)+H_{\mathrm{eff}(2)}(t)+\mathcal{O}\left(\omega^{-3}\right)
$$

where

$$
\begin{aligned}
H_{\mathrm{eff}(0)}= & H^{(0)}, H_{\mathrm{eff}(1)}=\frac{1}{\hbar \omega} \sum_{m=1}^{\infty} \frac{1}{m}\left[H^{(m)}, H^{(-m)}\right], \\
H_{\mathrm{eff}(2)}= & \frac{1}{(\hbar \omega)^{2}} \sum_{m \neq 0}\left\{\frac{\left[H^{(-m)},\left[H^{(0)}, H^{(m)}\right]\right]-\mathrm{i} \hbar\left[H^{(-m)}, \dot{H}^{(m)}\right]}{2 m^{2}}\right. \\
& \left.+\sum_{n \neq\{0, m\}} \frac{\left[H^{(-m)},\left[H^{(m-n)}, H^{(n)}\right]\right]}{3 m n}\right\}
\end{aligned}
$$

Here the commutators contain the Fourier component of the original Hamiltonian:

$$
H(\omega t, t)=\sum_{m=-\infty}^{\infty} H^{(m)}(t) e^{\mathrm{i} m \omega t}
$$

Spin in an oscillating magnetic field

Slowly varying amplitude of the magnetic field:

$$
\begin{aligned}
& H(\omega t, t)=g_{F} \underbrace{\mathbf{F}} \cdot \overbrace{\mathbf{B}(t)} \cos (\omega t) \\
& \text { Spin operator: } \mathbf{F}=F_{1} \mathbf{e}_{x}+F_{2} \mathbf{e}_{y}+F_{3} \mathbf{e}_{z}
\end{aligned}
$$

The non-zero Fourier components are

$$
H^{(1)}=H^{(-1)}=\frac{g_{F}}{2} \mathbf{F} \cdot \mathbf{B}(t)
$$

The effective Hamiltonian is given by
$H_{\mathrm{eff}}=H_{\mathrm{eff}(2)}=\frac{-\mathrm{i} \hbar}{(\hbar \omega)^{2}}\left[H^{(1)}, \dot{H}^{(-1)}\right]=g_{F}^{2}(2 \omega)^{-2} \mathbf{F} \cdot(\mathbf{B} \times \dot{\mathbf{B}})$
By definding a non-Abelian geometric vector potential as $\mathcal{A}=g_{F}^{2}(2 \omega)^{-2}(\mathbf{F} \times \mathbf{B})$, the effective evolution reads

$$
\begin{equation*}
U_{\text {eff }}\left(t_{\text {fin }}, t_{\text {init }}\right)=\mathcal{T} \exp \left[-\frac{i}{\hbar} \int_{t_{\text {init }}}^{t_{\text {fin }}} \mathcal{A} \cdot \mathrm{d} \mathbf{B}(t)\right] \tag{**}
\end{equation*}
$$

The integral depends only on a shape of the path and does not depend on the velocy. Performing an anticlockwise rotation of the magnetic field with constant amplitude $|\mathbf{B}|=B$ by an angle φ in a plane orthogonal to a unit vector $\mathbf{n} \propto \mathbf{B} \times \dot{\mathbf{B}}$, the evolution operator (${ }^{* *)}$ simplifies to

$$
U_{\mathrm{eff}}(\varphi, \mathbf{n})=\exp \left[-\frac{\mathrm{i}}{\hbar} \varphi \frac{g_{F}^{2} B^{2}}{4 \omega^{2}} \mathbf{F} \cdot \mathbf{n}\right]
$$

Comparison of analytical and numerical results for the spin-1/2 particle

$$
|\phi(t)\rangle=c_{\uparrow}(t)|\uparrow\rangle+c_{\downarrow}(t)|\downarrow\rangle
$$

The magnetic field $\mathbf{B}=\Omega / g_{F}\left[\mathbf{e}_{z} \cos (\Omega t)-\mathbf{e}_{y} \sin (\Omega t)\right]$ performs $l=10$ rotations for the system in an initial state $|\phi\rangle=|\uparrow\rangle$. The analytical results represented by lines while the numerical results depicted by symbols.

Acknowledgement

This research is funded by the European Social Fund under the No 09.3.3-LMT-K-712 "Development of Competences of Scientists, other Researchers and Students through Practical Research Activities" measure.

References

[1] V. Novičenko, E. Anisimovas, G. Juzeliūnas: Phys. Rev. A 95, 023615 (2017)

