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Delay feedback control (DFC) and 

extended DFC technique (1) 

)(XFX 
Autonomic system with a unstable periodic orbit (UPO):  
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noninvasive control force (DFC case) 

K. Pyragas, Continuous control of chaos by self-controlling feedback, 

Phys. Lett. A 170 (1992) 421–428 

    must be equal to the 

period of UPO  

Example of stabilization of 

period-one UPO in Rossler 

system: 
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Delay feedback control (DFC) and 

extended DFC technique (2) 

)(XFX 
Autonomic system with a unstable periodic orbit (UPO):  

noninvasive control force (EDFC case) 

J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, Stabilizing unstable periodic 

orbits in fast dynamical systems, Phys. Rew. E 50, 3245 (1994) 
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If R=0, we get the DFC case. 

Some UPO can not be stabilized using the DFC, but can be 

stabilized using the EDFC. 
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Delay time is not equal to the period of UPO 

Delay time is close, but not equal to the period of UPO:  

Oscillations with 

period     , which is 

something between 

the delay time and 

the period of UPO. 
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W. Just, D. Reckwerth, J. Mckel, E. Reibold, and H. Benner, Delayed feedback 

control of periodic orbits in autonomous systems, Phys. Rew. Lett. 81, 562 (1998) 



Phase reduction method is an efficient tool to analyze 

weakly perturbed limit cycle oscillations. 

Most investigations in the field of phase reduction are devoted 

to the systems described by ODEs. 

Introduction to phase reduction (1) 

Phase reduction method is extended to delay differential 

equations (DDE) : 

V. Novičenko and K. Pyragas, Phase reduction of weakly perturbed limit cycle 

oscillations in time-delay systems, Physica D 241, 1090 (2012). 
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A dynamical system with a stable limit cycle. 

For each state on the limit cycle and near the limit cycle 

is assigned a scalar variable (PHASE). 

The phase dynamics of the free system satisfies: 

1

Let’s apply an external perturbation to the system. 

The aim of phase reduction method is to find a dynamical  

equation the phase of perturbed system: 

?

Introduction to phase reduction (2) 
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Phase dynamics:    ,here         is periodic vector 

valued function - the phase response curve (PRC) 

Phase reduction of ODE systems 

Perturbed system: 

PRC is the periodic solution of an adjoint equation: 

With initial condition: 

Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory.Gostexizdat, 

Moscow (1956) 
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Period of system perturbed by a small value 
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State dependent perturbation: Free system: 
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dt
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From the phase equation we get a perturbed period: 



Expression for period of orbit stabilized by EDFC 
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Delay time ≠ period of the UPO: 
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Non-mismatch component 

which stabilize the UPO: 

Mismatch component 

which can be treated by 

phase reduction method: 
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UPO dxZ  External parameter can be found 

from the PRC of the UPO: 



Example: numerical simulation of Rossler system 
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Rossler system with EDFC: 

Control force: 
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(a) R=const=0.2 (b) K=const=0.2 

Various mismatch, from bottom to top, τ –T=-1.0; -0.8; 

-0.6; -0.4; -0.2; 0.0; 0.2; 0.4; 0.6; 0.8; 1.0 



Conclusions 

We have considered systems subjected to an extended 

delayed feedback control force in the case when 

the delay time differs slightly from the period of unstable 

periodic orbit of the control-free system  

We have derived an analytical expression which shows in an 

explicit form how the period of stabilized orbit changes when 

varying the delay time and the parameters of the control 

Our approach is based on the phase reduction theory 

adopted to systems with time delay 
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The results are useful in experimental implementations, 

since the unknown period of the UPO can be determined 

from only few experimental measurements 
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The end 


