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Motivation

The synchronous behavior can be desirable or harmful.

• Power grids
• Parkinson’s disease, essential tremor
• Pedestrians on a bridge
• Cardiac pacemaker cells
• Internal circadian clock

The ability to control synchrony in oscillatory networks covers a wide range of real-world
applications.



Phase reduction method

Phase reduction method allows the approximation of high dimensional dynamics of oscillators
with a single-phase variable.
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Initial condition for the phase response curve:      
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Complex oscillator network – the phase reduction approach

Weakly coupled near-identical limit cycle oscillators:
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Synchronization condition:
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By treating a free oscillator as
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Applying the phase reduction method for systems
with time-delay
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Control of synchronization in a complex oscillator network
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(i) The delay times are the same Ti  
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(ii) The delay times are equal to the natural periods

synchronization cannot be controlled
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is a stable solution, under additional assumptions:     ttt N  21
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Numerical demonstrations

V. Novičenko, Phys. Rev. E 92, 022919 (2015)
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According to the odd number limitation theorem,
the periodic solution                       is unstable, if

Odd number limitation

What happen for                   ?
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Motion of the Floquet multipliers



Summary

The delayed feedback control force applied to a limit cycle oscillator changes its
stability properties and, as a consequence, perturbation-induced phase response. The
phase model of the oscillator network shows that the coupling strength and the
frequencies depend on the parameters of the control.

Advantages:
• does not require any information about the oscillator model
• does not depends on network topology
• can be simple realized in experiment
• theoretically synchronization can be controlled for the arbitrary small/large coupling
strength
• the control scheme has only two parameters: control gain and delay time

Disadvantages:
• the phase model can be derived only for a weak coupling
• the control force can disrupt the stability of periodic orbit



The end


