Adaptive delayed feedback control to stabilize in-phase synchronization in complex oscillator networks

Viktor Novičenko

September 2019, Rostock

Vilnius
University

Motivation

Synchronous behavior can be desirable or harmful.

- Power grids
- Parkinson's disease, essential tremor
- Pedestrians on a bridge
- Cardiac pacemaker cells
- Internal circadian clock

The ability to control synchrony in oscillatory network covers a wide range of real-world applications.

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
coupling function $G(x, x)=0$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
coupling function $\mathrm{G}(\mathrm{x}, \mathrm{x})=0$
"central" oscillator $\dot{\mathrm{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathrm{f}_{i}(\mathrm{x})\right| \sim \varepsilon$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x})$ with $\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$
and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
$\xrightarrow{\text { phase reduction }}$
coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathrm{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$
and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $\mathbf{G}(\mathbf{x}, \mathrm{x})=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$ and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
and coupling function
$h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$
and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$
and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$
and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$
and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
with time delays $\left|\tau_{i}-T_{i}\right| \sim\left|\tau_{i}-T\right| \sim \varepsilon$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with $\left|\mathbf{f}(\mathbf{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$
and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$
and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right) \quad$ phase reduction for
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
system with time delay
with time delays $\left|\tau_{i}-T_{i}\right| \sim\left|\tau_{i}-T\right| \sim \varepsilon$

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
coupling function $\mathbf{G}(\mathbf{x}, \mathrm{x})=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$ and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

with frequency $\omega_{i}=\Omega_{i}-\Omega$ and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$$
\dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
system with time delay
with time delays $\left|\tau_{i}-T_{i}\right| \sim\left|\tau_{i}-T\right| \sim \varepsilon$

V. Novičenko: Delayed feedback control of synchronization in weakly coupled oscillator networks, Phys. Rev. E 92, 022919 (2015)

440

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $G(x, x)=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathrm{x})$ with $\left|\mathbf{f}(\mathrm{x})-\mathbf{f}_{i}(\mathrm{x})\right| \sim \varepsilon$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$ and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$ and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

phase reduction for
$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right) \quad$ system with time delay
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
with time delays $\left|\tau_{i}-T_{i}\right| \sim\left|\tau_{i}-T\right| \sim \varepsilon$

$$
\dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

effective coupling strength $\varepsilon^{\text {eff }}=\varepsilon \alpha(K C)$ effective frequency

$$
\omega_{i}^{\mathrm{eff}}=\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1]
$$

V. Novičenko: Delayed feedback control of synchronization in weakly coupled oscillator networks, Phys. Rev. E 92, 022919 (2015)

Complex oscillator network - the phase reduction approach

Weakly coupled near-identical limit cycle oscillators without control:
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$

$$
\dot{\psi}_{i}=\omega_{i}+\varepsilon \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

coupling function $\mathbf{G}(\mathbf{x}, \mathbf{x})=0$
"central" oscillator $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with $\left|\mathbf{f}(\mathbf{x})-\mathbf{f}_{i}(\mathbf{x})\right| \sim \varepsilon$ has a stable periodic solution $\boldsymbol{\xi}(t+T)=\boldsymbol{\xi}(t)$ and a phase response curve $\mathbf{z}(t+T)=\mathbf{z}(t)$
with frequency $\omega_{i}=\Omega_{i}-\Omega$
and coupling function

$$
h(\chi)=\frac{1}{T} \int_{0}^{T}\left\{\mathbf{z}^{T}\left(\frac{s}{\Omega}\right) \cdot \mathbf{G}\left(\boldsymbol{\xi}\left(\frac{s+\chi}{\Omega}\right), \boldsymbol{\xi}\left(\frac{s}{\Omega}\right)\right)\right\} \mathrm{d} s
$$

Weakly coupled near-identical limit cycle oscillators under delayed feedback control:

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$$
\dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

effective coupling strength $\varepsilon^{\text {eff }}=\varepsilon \alpha(K C)$ effective frequency

$$
\omega_{i}^{\mathrm{eff}}=\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1]
$$

with time delays $\left|\tau_{i}-T_{i}\right| \sim\left|\tau_{i}-T\right| \sim \varepsilon$
$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right) \quad$ phase reduction for
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right] \quad$ system with time delay
the function $\alpha(K C)=(1+K C)^{-1}$ and the constant $C=\int_{0}^{T}\left\{\mathbf{z}^{T}(s) \cdot D_{2} \mathbf{f}(\boldsymbol{\xi}(s), 0)\right\}\left\{[\nabla g(\boldsymbol{\xi}(s))]^{T} \cdot \dot{\boldsymbol{\xi}}(s)\right\} \mathrm{d} s$
V. Novičenko: Delayed feedback control of synchronization in weakly coupled oscillator networks, Phys. Rev. E 92, 022919 (2015)

Control of synchronization by delayed feedback force

$$
\begin{align*}
& \dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}\\
& s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right) \\
& u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right] \\
& \text { where } \quad \varepsilon^{\mathrm{eff}}=\varepsilon \alpha(K C) \\
& \omega_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right) \\
& \alpha(K C)=\omega_{i}+\Omega_{i}-T_{i} \\
&
\end{align*}
$$

Control of synchronization by delayed feedback force

$$
\begin{equation*}
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}
\end{equation*}
$$

$$
\dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
where $\varepsilon^{\text {eff }}=\varepsilon \alpha(K C)$
$\omega_{i}^{\text {eff }}=\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1]$
$\alpha(K C)=(1+K C)^{-1}$

Control of synchronization by delayed feedback force

$$
\begin{array}{rlrl}
\dot{\mathbf{x}}_{i} & =\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}\\
s_{i}(t) & =g\left(\mathbf{x}_{i}(t)\right) \\
u_{i}(t) & =K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right] \\
& & \dot{\psi}_{i} & =\omega_{i}^{\text {eff }}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right) \\
\text { where } \quad \varepsilon^{\mathrm{eff}} & =\varepsilon \alpha(K C) \\
\omega_{i}^{\text {eff }} & =\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1] \\
\alpha(K C)=(1+K C)^{-1}
\end{array}
$$

(i) All time delays are the same $\tau_{i}=\tau=T$ $\omega_{i}^{\text {eff }}=\alpha(K C) \omega_{i} \Rightarrow$ synchronization can not be controled

Control of synchronization by delayed feedback force

$$
\begin{array}{rlrl}
\dot{\mathbf{x}}_{i} & =\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}\\
s_{i}(t) & =g\left(\mathbf{x}_{i}(t)\right) \\
u_{i}(t) & =K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right] \\
& & \dot{\psi}_{i} & =\omega_{i}^{\text {eff }}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right) \\
\text { where } \quad \varepsilon^{\mathrm{eff}} & =\varepsilon \alpha(K C) \\
\omega_{i}^{\text {eff }} & =\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1] \\
\alpha(K C)=(1+K C)^{-1}
\end{array}
$$

(i) All time delays are the same $\tau_{i}=\tau=T$ $\omega_{i}^{\text {eff }}=\alpha(K C) \omega_{i} \Rightarrow$ synchronization can not be controled
(ii) The time delays are equal to the natural periods $\tau_{i}=T_{i} \Rightarrow \omega_{i}^{\text {eff }}=\omega_{i}$

Control of synchronization by delayed feedback force

$$
\begin{array}{rlrl}
\dot{\mathbf{x}}_{i} & =\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}\\
s_{i}(t) & =g\left(\mathbf{x}_{i}(t)\right) \\
u_{i}(t) & =K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right] \\
& & \dot{\psi}_{i} & =\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right) \\
\text { where } \quad \varepsilon^{\mathrm{eff}} & =\varepsilon \alpha(K C) \\
\omega_{i}^{\mathrm{eff}} & =\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1] \\
\alpha(K C)=(1+K C)^{-1}
\end{array}
$$

(i) All time delays are the same $\tau_{i}=\tau=T$
$\omega_{i}^{\text {eff }}=\alpha(K C) \omega_{i} \Rightarrow$ synchronization can not be controled
(ii) The time delays are equal to the natural periods $\tau_{i}=T_{i} \Rightarrow \omega_{i}^{\text {eff }}=\omega_{i}$
(iii) The time delays are
$\tau_{i}-T_{i}=\frac{T-T_{i}}{1-\alpha(K C)} \Rightarrow \omega_{i}^{\text {eff }}=0$
in-phase synchronization $\psi_{1}=\psi_{2}=\ldots=\psi_{N}$ is a stable solution of Eq. (1)

Control of synchronization by delayed feedback force

$$
\begin{align*}
\dot{\mathbf{x}}_{i} & =\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) \tag{1}\\
s_{i}(t) & =g\left(\mathbf{x}_{i}(t)\right) \\
u_{i}(t) & =K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]
\end{aligned} \quad \begin{aligned}
& \dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right) \\
& \text { where } \quad \varepsilon^{\mathrm{eff}}=\varepsilon \alpha(K C) \\
& \omega_{i}^{\mathrm{eff}}=\omega_{i}+\Omega \frac{\tau_{i}-T_{i}}{T}[\alpha(K C)-1] \\
& \alpha(K C)=(1+K C)^{-1}
\end{align*}
$$

(i) All time delays are the same $\tau_{i}=\tau=T$
$\omega_{i}^{\text {eff }}=\alpha(K C) \omega_{i} \Rightarrow$ synchronization can not be controled
(ii) The time delays are equal to the natural periods $\tau_{i}=T_{i} \Rightarrow \omega_{i}^{\text {eff }}=\omega_{i}$
(iii) The time delays are
$\tau_{i}-T_{i}=\frac{T-T_{i}}{1-\alpha(K C)} \Rightarrow \omega_{i}^{\text {eff }}=0$

in-phase synchronization $\psi_{1}=\psi_{2}=\ldots=\psi_{N}$ is a stable solution of Eq. (1)

Our goal is to derive an algorithm for authomatic adjusment of the time delays to acheve in-phase synchronization

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

440

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$
$\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)$
$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$
potential for the in-phase synchronization

$$
V=\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]^{2}
$$

V. Novičenko and I. Ratas: In-phase synchronization in complex oscillator networks by adaptive delayed feedback control, Phys. Rev. E 98, 042302 (2018)

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
potential for the in-phase
synchronization

$$
V=\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]^{2}
$$

$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$

$$
s_{i}(t) \approx g\left(\xi\left(t+\frac{\psi_{i}}{\Omega}\right)\right) \Rightarrow \frac{\partial V}{\partial \tau_{k}}=\Omega^{-1} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]\left[\dot{s}_{j}(t) \frac{\partial \psi_{j}}{\partial \tau_{k}}-\dot{s}_{i}(t) \frac{\partial \psi_{i}}{\partial \tau_{k}}\right]
$$

V. Novičenko and I. Ratas: In-phase synchronization in complex oscillator networks by adaptive delayed feedback control, Phys. Rev. E 98, 042302 (2018)

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
potential for the in-phase synchronization $V=\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]^{2}$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$

$$
s_{i}(t) \approx g\left(\xi\left(t+\frac{\psi_{i}}{\Omega}\right)\right) \Rightarrow \frac{\partial V}{\partial \tau_{k}}=\Omega^{-1} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]\left[\dot{s}_{j}(t) \frac{\partial \psi_{j}}{\partial \tau_{k}}-\dot{s}_{i}(t) \frac{\partial \psi_{i}}{\partial \tau_{k}}\right]
$$

by assuming that $\left|\psi_{j}-\psi_{i}\right|$ is small and do not change in time we get $\mathbf{L} \psi \sim \tau$
here $\mathbf{L}=\mathbf{D}-\mathbf{A}$
V. Novičenko and I. Ratas: In-phase synchronization in complex oscillator networks by adaptive delayed feedback control, Phys. Rev. E 98, 042302 (2018)

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
potential for the in-phase synchronization $V=\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]^{2}$
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$

$$
s_{i}(t) \approx g\left(\xi\left(t+\frac{\psi_{i}}{\Omega}\right)\right) \Rightarrow \frac{\partial V}{\partial \tau_{k}}=\Omega^{-1} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]\left[\dot{s}_{j}(t) \frac{\partial \psi_{j}}{\partial \tau_{k}}-\dot{s}_{i}(t) \frac{\partial \psi_{i}}{\partial \tau_{k}}\right]
$$

by assuming that $\left|\psi_{j}-\psi_{i}\right|$ is small and do not change in time we get $\mathbf{L} \psi \sim \tau$

$$
\begin{gathered}
\text { here } \mathbf{L}=\mathbf{D}-\mathbf{A} \\
\dot{\psi}_{i}=\omega_{i}^{\text {eff }}+\varepsilon^{\text {eff }} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
\end{gathered}
$$

V. Novičenko and I. Ratas: In-phase synchronization in complex oscillator networks by adaptive delayed feedback control, Phys. Rev. E 98, 042302 (2018)

Adaptive delayed feedback control to stabilize in-phase synchronization

V. Pyragas and K. Pyragas: Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay, Phys. Lett. A 375, 3866 (2011)

Main idea:

- construct potential $V \geq 0$ which is equal to zero at desirable state and positive at other states
- use gradient descent method for the time delay $\dot{\tau}=-\frac{\partial V}{\partial \tau}$

$$
\dot{\mathbf{x}}_{i}=\mathbf{f}_{i}\left(\mathbf{x}_{i}, u_{i}(t)\right)+\varepsilon \sum_{j=1}^{N} a_{i j} \mathbf{G}\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)
$$

$s_{i}(t)=g\left(\mathbf{x}_{i}(t)\right)$
potential for the in-phase
$u_{i}(t)=K\left[s_{i}\left(t-\tau_{i}\right)-s_{i}(t)\right]$

$$
s_{i}(t) \approx g\left(\xi\left(t+\frac{\psi_{i}}{\Omega}\right)\right) \Rightarrow \frac{\partial V}{\partial \tau_{k}}=\Omega^{-1} \sum_{i, j=1}^{N} a_{i j}\left[s_{j}(t)-s_{i}(t)\right]\left[\dot{s}_{j}(t) \frac{\partial \psi_{j}}{\partial \tau_{k}}-\dot{s}_{i}(t) \frac{\partial \psi_{i}}{\partial \tau_{k}}\right]
$$

by assuming that $\left|\psi_{j}-\psi_{i}\right|$ is small and do not change in time we get $\mathbf{L} \psi \sim \tau$ finally the derivative $\frac{\partial \psi_{i}}{\partial \tau_{k}} \sim\left(\mathbf{L}^{\dagger}\right)_{i k}$

$$
\begin{gathered}
\text { here } \mathbf{L}=\mathbf{D}-\mathbf{A} \\
\dot{\psi}_{i}=\omega_{i}^{\mathrm{eff}}+\varepsilon^{\mathrm{eff}} \sum_{j=1}^{N} a_{i j} h\left(\psi_{j}-\psi_{i}\right)
\end{gathered}
$$

V. Novičenko and I. Ratas: In-phase synchronization in complex oscillator networks by adaptive delayed feedback control, Phys. Rev. E 98, 042302 (2018)

Network of 6 Stuart-Landau oscillators

$\mathbf{f}_{i}(\mathbf{x}, u)=\left[\begin{array}{c}x_{(1)}\left(1-x_{(1)}^{2}-x_{(2)}^{2}\right)-\Omega_{i} x_{(2)}+u \\ x_{(2)}\left(1-x_{(1)}^{2}-x_{(2)}^{2}\right)+\Omega_{i} x_{(1)}\end{array}\right]$
$\mathbf{G}(\mathbf{y}, \mathbf{x})=\left[\begin{array}{c}2\left(y_{(1)}-x_{(1)}\right) \\ 0\end{array}\right] \Rightarrow h(\chi)=\sin (\chi)$
$r=\frac{1}{6} \sum_{i=1}^{6} \exp \left[\mathrm{i} \psi_{i}\right]$

(2) 4411

Network of 6 Stuart-Landau oscillators

$\mathbf{f}_{i}(\mathbf{x}, u)=\left[\begin{array}{c}x_{(1)}\left(1-x_{(1)}^{2}-x_{(2)}^{2}\right)-\Omega_{i} x_{(2)}+u \\ x_{(2)}\left(1-x_{(1)}^{2}-x_{(2)}^{2}\right)+\Omega_{i} x_{(1)}\end{array}\right]$
$\mathbf{G}(\mathbf{y}, \mathbf{x})=\left[\begin{array}{c}2\left(y_{(1)}-x_{(1)}\right) \\ 0\end{array}\right] \Rightarrow h(\chi)=\sin (\chi)$
$r=\frac{1}{6} \sum_{i=1}^{6} \exp \left[i \psi_{i}\right]$

(2) 4411

Network of 6 FitzHugh-Nagumo oscillators

$$
\begin{aligned}
& \mathbf{f}_{i}(\mathbf{x}, u)=\left[\begin{array}{c}
x_{(1)}-x_{(1)}^{3} / 3-x_{(2)}+0.5 \\
\epsilon_{i}\left(x_{(1)}(1+u)+0.7-0.8 x_{(2)}\right)
\end{array}\right] \\
& \left.\mathbf{G}(\mathbf{y}, \mathbf{x})=\left[\begin{array}{ll}
y_{(1)} /\left(2+y_{(2)}\right)-x_{(1)} /\left(2+x_{(2)}\right) \\
0
\end{array}\right] \Rightarrow \begin{array}{ll}
0.4 \\
0 & 0.2 \\
\hline
\end{array}\right]
\end{aligned}
$$

Network of 6 FitzHugh-Nagumo oscillators

$$
\begin{aligned}
& \mathbf{f}_{i}(\mathbf{x}, u)=\left[\begin{array}{c}
x_{(1)}-x_{(1)}^{3} / 3-x_{(2)}+0.5 \\
\epsilon_{i}\left(x_{(1)}(1+u)+0.7-0.8 x_{(2)}\right)
\end{array}\right] \\
& \mathbf{G}(\mathbf{y}, \mathbf{x})=\left[\begin{array}{c}
y_{(1)} /\left(2+y_{(2)}\right)-x_{(1)} /\left(2+x_{(2)}\right) \\
0
\end{array}\right] \Rightarrow \\
& \text { (a) } \\
& \text { (c) }
\end{aligned}
$$

Network of 6 FitzHugh-Nagumo oscillators

$$
\begin{aligned}
& \mathbf{f}_{i}(\mathbf{x}, u)=\left[\begin{array}{c}
x_{(1)}-x_{(1)}^{3} / 3-x_{(2)}+0.5 \\
\epsilon_{i}\left(x_{(1)}(1+u)+0.7-0.8 x_{(2)}\right)
\end{array}\right] \\
& \mathbf{G}(\mathbf{y}, \mathbf{x})=\left[\begin{array}{c}
y_{(1)} /\left(2+y_{(2)}\right)-x_{(1)} /\left(2+x_{(2)}\right) \\
0
\end{array}\right] \Rightarrow \\
& \text { (a) } \\
& \text { (b) }
\end{aligned}
$$

(2) 4411

The end

Vilnius
University

